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Preface

Solid-state laser systems are compact, easy to use, easy to tune, and have good
beam quality; they have unique advantages comparing with lasers of gas, liquid,
and other media so that have a very wide and important application in many fields.
Therefore, it is necessary to search for suitable materials according to different
performance requirements. This requires the material researchers deeply grasp the
physical knowledge about the main performance of solid-state laser materials.

Many excellent monographs have been published in this field; however, we feel
necessary to update them by including new published literatures as well as our own
research work. The subject of this book is spectroscopic principle of rare earth ions
and transition metal ions doped in solid. In addition to many general principles of
spectroscopy and calculation methods, to determine the symmetry of the energy
level, a unique group chain method is introduced, while a method from traditional
crystal field theory based on a comprehensive crystal field quantum number table is
also described. The stimulated non-radiative transition theory and the apparent
crystal field model introduced by us are discussed.

Comparing with many published books, this book has the following advantages.
That is, it derives all the calculation formulas from the first principles of physics
instead of direct citation in some books, so that readers can understand the physics
insight clearly and exploit them correctly in their own work. Furthermore, readers
could develop related formulas by themselves, which have not been given in this
book, following the method provided in this book.

We hope this book will provide useful references for researchers in solid-state
laser materials, luminescent materials, solid-state spectroscopy, and laser science
and technology, as well as senior undergraduates and postgraduates having basis
knowledge of optics, quantum mechanics, spectroscopy, and condensed matter
physics.

The focus of this book is on the physical fundamentals. The spectral, laser, and
physical properties of the materials mentioned in the book are just scales and claws,
especially without reference to the rapidly developing and widely used ceramic
laser materials and new activated ions such as bismuth in recent years. On the other
hand, many excellent research works of peer experts have not been quoted. It is
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unavoidable that there are mistakes or omissions in the book, and readers are
welcome to criticize and correct them.

We express gratitude to the Fujian Institute of Research on the Structure of
Matter, Chinese Academy of Sciences, the Key Laboratory of Research on
Chemistry and Physics of Optoelectronic Materials, Chinese Academy of Sciences,
and the National Natural Science Foundation of China for their support and
funding, also appreciate the help from editor Zhou Han of China Science Publishing
House and editors of Springer Nature Press.

Fuzhou, China Zundu Luo
Yidong Huang
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About This Book

This book discusses in detail the spectral properties of solid-state laser materials,
including emission and absorption of light, the law of radiative and non-radiative
transitions, the selection rule of optical transition, and the calculation methods for
the spectral parameters. To determine the symmetry of the energy level, a unique
group chain method is introduced, while a method from traditional crystal field
theory based on a comprehensive crystal field quantum number table is also
described. The research works of the authors on this field, especially the stimulated
non-radiative transition theory and the apparent crystal field model, are introduced.
As such, the book provides essential tools for researchers and graduate students in
the fields of solid spectroscopy and solid laser material physics, while also offering
a valuable reference guide for instructors and advanced students of physics.
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Chapter 1
Energy Level of Free Ions

Most of the solid-state laser materials consist of insulators doped with a small
amount of rare earth ion or transition-metal ion (optically active ions, which will be
simply called active ions in all the discussions of this book). The spectra of all these
materials have very close relationship with the energy level structure of free ion
(atom) and the transition rules between these energy levels. Therefore, the basic
knowledge of the atomic spectroscopy is very important for the investigation of
laser materials. There are many good reference books in this field, for example,
Herzberg [1], Condon and Shortley [2], Slater [3], and Condon and Odabasi [4]. In
this chapter, only some basic knowledge necessary to the discussion in this book
will be covered. The books mentioned can be referred for further understanding.

1.1 Energy Levels of the Single Electron in Atoms
(Free Ions)

In the hydrogen atom as well as hydrogen-like atoms, for example, He+, Li2+, Be3+,
and so on, there is only one electron around a nucleus with positive charge. The
spectroscopy of single electron atoms is the only problem which can be dealt with
by quantum mechanics strictly. However, it is the most important background for
the analysis of the other problems of atomic spectroscopy. The quantum mechanics
is used to analyze hydrogen atom and hydrogen-like atoms and solve a Schrödinger
equation for a charged particle in a central electric field. Its Hamiltonian can be
written as

H ¼ H0 þHso þHZ þ other small terms ð1:1Þ

where H0 is the Hamiltonian describing the interaction of the electron with the
nucleus. Hso is the spin–orbital interaction Hamiltonian

© Science Press and Springer Nature Singapore Pte Ltd. 2020
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Hso ¼ nðrÞl � s ð1:2Þ

where n(r) is the coefficient of the spin–orbital coupling, l ¼ r� p denotes the
orbital vector operator of the electron, and s is the spin vector operator of the
electron. The spin–orbital interaction is actually a relativistic effect. Besides, the
other relativistic effects will not be considered here. HZ is the interaction
Hamiltonian of the atoms in external magnetic field. If the magnetic induction of
external magnetic field is represented by B, then HZ can be written as

HZ ¼ e
me

s � B ð1:3Þ

where e denotes the electric charge of electron and me is the mass of electron.
The general method to deal with the above problem in quantum mechanics is to

consider at first the main term in the Hamiltonian and then introduce the small terms
as a perturbation. Without magnetic field and spin–orbital interaction, we have

H ¼ H0 ¼ � �h2

2me
r2 � Ze2

4pe0r
¼ � �h2

2me

� �
@2

@r2
þ 2

r

� �
@

@r

� �
þ �h2l2

2mer2
� Ze2

4pe0r

ð1:4Þ

In spherical coordinate system, the components of the orbital angular momentum
operator can be written as

lx ¼ i�h sin/
@

@h
þ cot h cos/

@

@/

� �

ly ¼ �i�h cos/
@

@h
� cot h sin/

@

@/

� �

lz ¼ �i�h
@

@/

Therefore

l2 ¼ ��h2
1

sin h
@

@h
sin h

@

@h

� �
þ 1

sin2 h

@2

@/2

� �
ð1:5Þ

The properties of the angular momentum operator will be discussed later in more
detail. The solution of the Schrödinger equation should be presented at first. The
steady-state Schrödinger equation is expressed as

� �h2

2me

1
r2

@

@r
r2

@

@r

� �
þ 1

r2 sin h
@

@h
sin h

@

@h

� �
þ 1

r2 sin h
@2

@/2

� �
w� Ze2

4pe0r
w ¼ Ew

ð1:6Þ
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The wave function W can be solved by means of variable separation method. One
should first separate the radial part and angular part as

w r; h;/ð Þ ¼ RðrÞY h;/ð Þ

Then substituting into (1.6), we obtain

1
R
d
dr

r2
dR
dr

� �
þ 2mer2

�h2
Eþ Ze2

4pe0r

� �
¼ � 1

Y
1

sin h
@

@h
sin h

@Y
@h

� �
þ 1

sin2 h

@2Y

@/2

� �
ð1:7Þ

One can see in the above equation that the terms in the left-hand side depend only
on the radial coordinate r, while those in the right-hand side depend only on the
angular variables h and /. The validity of the equation means that both sides should
be equal to a constant k. In this way, one equation of the variable r is obtained as

1
r2

d
dr

r2
dR
dr

� �
þ 2me

�h2
Eþ Ze2

4pe0r

� �
� k
r2

� �
R ¼ 0 ð1:8Þ

The other equation of angular variables h and / will be

1
sin h

@

@h
sin h

@Y
@h

� �
þ 1

sin2 h

@2Y

@/2 þ kY ¼ 0 ð1:9Þ

Suppose Yðh;/Þ ¼ HðhÞUð/Þ, then the equation for angular variables can be
further separated as

d2Uð/Þ
d/2 þm2Uð/Þ ¼ 0 ð1:10Þ

with solution of Uð/Þ ¼ ð2pÞ�1=2 exp im/ð Þ and m ¼ 0;�1;�2; . . .. The other
equation is

1
sin h

d
dh

sin h
dHðhÞ
dh

� �
þ k� m2

sin2 h

� �
HðhÞ ¼ 0 ð1:11Þ

Let n ¼ cos h, then

d
dn

ð1� n2Þ dH
dn

� �
þ k� m2

1� n2

� �
H ¼ 0 ð1:12Þ

This is the associated Legendre equation. Solution of this equation is valid in the
range of �1� n� 1, and the constant k can only be k ¼ lðlþ 1Þ, l = 0, 1, 2, 3, …,
and mj j � l. Its solution is

1.1 Energy Levels of the Single Electron in Atoms (Free Ions) 3



HðhÞ ¼ ð�1Þ� mþ mj jð Þ=2 ð2lþ 1Þðl� mj jÞ!
2ðlþ mj jÞ!

� �1=2
PðlÞ

mj jðcos hÞ ð1:13Þ

Therefore

Y ðlÞ
m h;/ð Þ ¼ 2pð Þ�1=2 �1ð Þ mþ mj jð Þ=2 2lþ 1ð Þðl� mj jÞ!

2ðlþ mj jÞ!
� �1=2

PðlÞ
mj jðcos hÞ expðim/Þ

ð1:14Þ

The spherical harmonic function Ylmðh;/Þ, designated by quantum numbers l and
m, is orthogonal and normalized, that is

Z2p
0

Zp
0

Y l0ð Þ
m0 ðh;/ÞY lð Þ

m ðh;/Þ sin hdhd/ ¼ dl0ldm0m ð1:15Þ

For the problem of single electron in hydrogen atom, the equation for radial
variable can be solved and expressed by Laguerre polynomials as

RnlðrÞ ¼ Nnl expð�Zr=na1Þ 2Zr
na1

� �l

L2lþ 1
nþ 1 ð2Zr=na1Þ ð1:16Þ

where the constant of normalization Nnl is

Nnl ¼ � 2Z
na1

� �3ðn� l� 1Þ!
2n ðnþ lÞ!½ �3

( )1=2

ð1:17Þ

where a1 is the first Bohr radius of the hydrogen atoms

a1 ¼ 4pe0�h2

mee2

Integer n called principal quantum number should satisfy n� lþ 1 and the energy
eigenvalues will be given by

En ¼ � Z2e2

4pe0 � 2a1n2
¼ � meZ2e4

2ð4pe0Þ2n2�h2
ð1:18Þ

Here SI unit system is used. Changing to CGS unit system, the electron charge
e should be multiplied by a factor of (4pe0)

1/2.
It can be seen from (1.18) that the energy of single electron in the hydrogen and

hydrogen-like atoms only depends on the principal quantum number n, if the spin–
orbit interaction and other relativistic effects are neglected. Thus the states with
different angular momentum and spin momentum quantum number but the same
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principal quantum number have the same energy, which correspond to the
degeneracy of the electronic states. The degree of the degeneracy f is found to be

f ¼ 2
Xn�1

l¼0

ð2lþ 1Þ ¼ 2n2 ð1:19Þ

Note that (1.4) shows the Hamiltonian without perturbation and possesses
coordinates inversion symmetry, that is, the Hamiltonian is invariant with respect to
the transformation of r ! �r. In the spherical coordinate system, it corresponds to
the transformations of r!r, h ! p� h;/ ! pþ/. If the inversion operator Pi is
introduced, then

Pif ðrÞ ¼ f ð�rÞ

It is easy to show that [H0, Pi] = 0. Then, by a basic principle of quantum
mechanics, the eigenstates of H0 are also the eigenstates of Pi. In this way, the
eigenstates can be classified as even parity states and odd parity states. It can be
demonstrated that

Ym
l ðp� h; pþ/Þ ¼ ð�1ÞlYm

l ðh;/Þ ð1:20Þ

namely

Pi nlmj i ¼ ð�1Þl nlmj i

where l if even or odd corresponds to even or odd parity state, respectively.
The energy correction by the spin–orbit interaction effect is

DEls ¼ � Z4mee4a2

4pe0ð Þ2�2�h2n3l lþ 1
2

� �
lþ 1ð Þ

j jþ 1ð Þ � l lþ 1ð Þ � s sþ 1ð Þ
2

ð1:21Þ

where a = 1/137 is the fine structure constant and j is the total angular momentum
quantum number involving the spin–orbital interaction. By calculating the energy
correction due to relativistic effect of mass but not the other relativistic effects,
Summerfield obtained the following result

DErel ¼ � Z4mee4a2

4pe0ð Þ2�2�h2n4
n

lþ 1
2

� 3
4

 !
ð1:22Þ

Dirac established a relativistic equation of the electron in 1928, taking into
account simultaneously the spin–orbital interaction and the other relativistic effects,
and he obtained
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Enj ¼ � Z2e2

ð4pe0Þ � 2a1n2
� Z4e2a2

ð4pe0Þ � 2a1n3
1

jþ 1
2

� 3
4n

 !
ð1:23Þ

Owing to the fact that a2 = 5 � 10−5, the corrections introduced by the spin–orbital
interaction and the relativistic effect of mass are very small and have a magnitude of
10−1 – 10−2 cm−1.

There is one kind of atoms, in which the electrons are like that in the hydrogen
atom. For example, the atoms of alkali metal, such as Li, Na, and K, have one
valence electron with very weak coupling to its atomic core. The atomic cores have
the electronic structure like those of the inert gases He, Ne, and Ar. The energy
eigenvalue of the valence electron without the effect of spin–orbital interaction has
a similar expression as that of the hydrogen atom

E0
nl ¼ � Z2e2

ð4pe0Þ � 2a1n	2
ð1:24Þ

where the principal quantum number n is replaced by effective quantum number n*

and n	 ¼ n� D. The quantum defect D has only a slight variation with the change
of principal quantum number n. However, it decreases obviously even if the angular
momentum quantum number has only a slight increase. It can be seen that the
energy eigenvalue Enl depends not only on n but also on l. If the spin–orbital effect
is also taken into account, one has

Enljs ¼ E0
nl �

Z	4mee4a2

4pe0ð Þ2�2�h2n3l lþ 1
2

� �ðlþ 1Þ �
jðjþ 1Þ � lðlþ 1Þ � sðsþ 1Þ

2

ð1:25Þ

where the effective charge Z	 ¼ Z � r and r is the shielding constant. It means that
the effect of interaction of the valence electron studied with the electrons of filled
shell in the atom is to reduce the effect of nucleus charge. The spin–orbital inter-
action is proportional to Z4 and so the splitting of yellow D line of sodium is only
17.2 cm−1 while the corresponding value for the main line system of cesium atom
reaches 554 cm−1.

The basic but most useful result of the theory of single electron atom is that an
electronic state is labeled by a principal quantum number n, an orbital angular
momentum quantum number, a magnetic quantum number m, and a spin quantum
number s. This is the basis for the discussion of multi-electron problems. Characters
s, p, d, f, h, i, k, l, m, n, o, q … are used to denote l = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 … in spectroscopy.
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1.2 General Properties of Energy Level in Multi-electron
of Free Ions

Multi-electron systems are complicate systems in quantum mechanics. The atoms
can be treated as N electrons with mass me and charge −e moving around a nucleus
with infinite mass and charge of +Ze and other electrons in the atom. The
non-relativistic Hamiltonian without spin–orbital interaction is

H ¼
XN
i¼1

p2i
2me

� Ze2

4pe0ri

� �
þ
XN

i[ j¼1

e2

4pe0ri;j
ð1:26Þ

The second term in the above expression involves variable ri,j, the distance between
electron i and electron j; therefore, it is impossible to use the method of variable
separation. Furthermore, this term is large enough and so perturbation method
cannot be used. It is impossible to solve its energy level structure strictly and
analytically. Fortunately, just like many other problems in quantum mechanics, this
problem can be solved by approximate method neglecting less important interac-
tions. Among these, the central field approximation is the most important one; it
assumes that each electron moves independently in the field of nucleus and the
central field is made up of spherically averaged potential fields of the other electrons
described by a function U(ri)/e. The non-spherical part of the electronic interactions
is treated as a perturbation, so the approximated Hamiltonian can be expressed as

H0 ¼
XN
i¼1

p2i
2me

þUðriÞ
� �

ð1:27Þ

Then Schrödinger equation will be

XN
i¼1

� �h2r2
i

2me
þUðriÞ

� �
w ¼ E0w ð1:28Þ

Obviously, the N variables ri in the above equation can be separated, that is the
wave function and eigenvalue can be expressed as

w ¼
YN
i¼1

wi kið Þ;E0 ¼
XN
i¼1

E0 kið Þ ð1:29Þ

where ni; li;mi are simply represented by ki. For different variables ri, the equations
have the same form. Thus the subscript i can be eliminated
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��h2r2

2me
þUðrÞ

� �
wðkÞ ¼ E0wðkÞ ð1:30Þ

The difference between the above equation and that of the hydrogen atom is the
potential function and so there is a difference in the radial wave function but the wave
functions of the angular part are the same. The wave function can still be written as

wðkÞ ¼ RnlðrÞY lð Þ
m ðh;/Þ ð1:31Þ

The energy E0ðkÞ is degenerated for different quantum number m.
Taking into account the electron spin, the wave function w(k) should be mul-

tiplied by a spin wave function a or b, which corresponds respectively to ms = +1/2
or ms = −1/2. According to Pauli exclusion principle, no two electrons can have the
same set of four quantum numbers n, l, m, and ms simultaneously. As a result, the
mathematic expression for the wave functions must be a determinant. For example,
the wave function for three electrons will be

w0 ¼ ð3!Þ�1=2
w1ðk1Þa1 w1ðk2Þa1 w1ðk2Þb1
w2ðk1Þa2 w2ðk2Þa2 w2ðk2Þb2
w3ðk1Þa3 w3ðk2Þa3 w3ðk2Þb3

������
������ ð1:32Þ

and can be simplified as

w0 ¼ þ
k1

þ
k2

þ
k3

	 

ð1:33Þ

where + is used to denote spin function a, and − denotes the spin function b.
In an atom, there are at most 2(2l + 1) electrons that can simultaneously have the

same n and l, and a completely filled electron shell is in which all the states with
given n, l, m, and ms are occupied.

From expressions of (1.20) and (1.29), it can be shown that the parity of
multi-electron system is

PN
i¼1 li, odd of this summation corresponds to a odd parity

state and even of this summation corresponds to a even parity state, because each
term in the determinant has the following relation

Y
i

Rnl rið ÞY ðlÞ
m h� p; pþ/ið Þ

� �
¼ �1ð Þ

P
i

liY
i

Rnl rið ÞY ðlÞ
m h;uið Þ

� �

therefore

PW ¼ �1ð Þ
P
i

li
W

There is also an important simplification in the studies of the multi-electron problem
of atoms (ions), that is, neglecting the effect of completely filled electron shells. In these
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shells, the total angular momentum and spin momentum of the electrons are equal to
zero and so their effect is the same on the electrons of different energy states in the
partially filled shells. Therefore, in the discussion of the energy level splitting of the
multi-electron system, the effect of the completely filled shells is not necessary to be
taken into account. For example, the electronic configuration of Nd3+ ions is
1s22s22p63s23p63d104s24p64d105s25p64f3. If the completely filled electron shells are
not considered, only three 4f electrons should be taken into account. In this way, the
work of the energy level calculation will be greatly reduced. However, even in this
situation, the number of the energy levels is still very large.

In the 4f3 configuration, l = 3, −3 � m � 3, and ms ¼ � 1
2. There are 14 states

with the same n and l but different m and ms. Then, the three f electrons can occupy
any of the 14 states. Therefore, taking into account of the spin, the total number of
states will be 14!

ð14�3Þ!3! ¼ 364. The quantum numbers n and l are all equal to 4 and 3,

respectively; thus it is enough to use only quantum number m and ms to designate
the energy state as {3+2+1+}, {3+−3+1+}, {0−−1−−3+}, and so on. Even in this
case, there are 364 � 364 = 132, 496 matrix elements to be calculated, if one wants
to study their energy levels. Fortunately, the symmetry of the system can be used to
simplify the calculation of energy levels. In the free atoms, the continuous group and
angular momentum theory can be used, and for the electrons of ions in the crystals, one
can use the point group theory, which will be discussed in next chapter.

First, we would like to mention the formation of spectral terms, their symbols,
and the Hund rule for determining the ground states. By the interaction of electron
orbital magnetic moment with spin magnetic moment, the energy levels of each
electronic configuration will be split into a series of energy level sets designated by
a total spin quantum number S and a total orbital angular momentum quantum
number L. Each energy level set contains (2S + 1) (2L + 1) states. Such energy
level set is called spectral term using symbol 2S+1L. The interaction between orbital
momentum and spin momentum is called the coupling of orbital angular momen-
tum with spin angular momentum.

There are four models of coupling in the atomic spectroscopy theory, that is, LS
coupling (Russell–Saunders coupling), jj coupling, pair coupling (Racah coupling), and
intermediate coupling. These depend on the relative magnitude between the Coulomb
and the spin–orbital interactions.
Generally speaking, the spin–orbit interaction has a magnetic origin and will be
rapidly intensified as the atomic number Z increased. Calculated by the hydrogen
wave function, spin–orbit coupling coefficients can be expressed as [5]

nnl ¼
e2�h2

2m2e2a21

Z4

n3l lþ 1
2

� �
lþ 1ð Þ

The spin–orbit splitting of sodium D line is 17.2 cm−1 while that of the cesium atom’s
main line reaches 554 cm−1. For the rare earth ions, the spin–orbit coupling coefficients
of Tm3+ ions are more than three times higher than that of the Pr3+ ions. On the other
hand, the spin–spin interaction is basically independent of Z. This phenomenon is
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obvious which resulted from the nature of the spin–spin interaction, because it is a
direct interaction between two electrons and so is not affected by the nucleus field.
Therefore, for the atoms with smaller atomic number Z, the magnitude of spin–spin
interaction is larger than that of spin–orbital interaction. In this case, the spin momenta
si of all the electrons will be coupled by exchange interaction to form a total spin
angular momentum S. Similarly, the orbital momenta li of all the electrons will also be
coupled by Coulomb interaction to form a total orbital angular momentum L. Finally,
the total spin angular momentum S couples with the total orbital angular momentum
L. This is so-called LS coupling. However, for the atoms with very large atomic
number, and especially for their excited states, the couplings between the spin angular
momentum and the orbital angular momentum of the same electron are stronger than
the spin–spin couplings between different electrons. Therefore, the orbital angular
momentum li couples with the spin angular momentum si of the same electron to form
a total angular momentum ji of the electron, then ji of all the electrons will couple to
form the total angular momentum J of the whole system. This is so-called jj coupling.

LS coupling is the most commonly used model. For transition-metal ions, and
especially their ground spectral terms, the LS coupling model can be used. This model
can also be used in the first approximation problems of rare earth ion in which the
electrostatic interaction between different 4f electrons and the spin–orbit interaction
have the same order of magnitudes. According to this model, the states can be des-
ignated by 2S+1LJ.

The calculation of the state energies is to solve the eigenvalue problem of
Hamiltonian involving all interactions in the atom and so the complicated and
tedious work should be done. However, the qualitative rules are helpful to under-
stand the energy level structure. Hund rule is one of the well-known qualitative
rules, which has the following guidelines:

(1) The spectral terms (or states) with the largest S values have the lowest energy
values among all the spectral terms of an electron configuration. Among these
terms, those with the highest L values have the lowest energy values.

(2) For the spectral terms in a configuration with a number of electrons equal to or
greater than that of the half-filled shell, the larger the J value, the lower is the
energy. On the other hand, if the number of electrons is less than that of the
half-filled shell, then the smaller the J values, the lower is the energy.

Hund rule is very convenient to determine the ground state of an electronic con-
figuration. Taking the example of the trivalent rare earth ion Nd3+ mentioned above,
its electronic configuration (4f3) belongs to the case of an electron number lower
than that of a half-filled shell. The total spin of three electrons can be 3/2 in
maximum, and the maximum L is 6. According to the second guideline of Hund
rule, the energy of state with J = 9/2 will be the lowest one. Therefore, the ground
states should be 4I9/2. The trivalent erbium ions have electronic configuration 4f11

and have the same spectral terms and states as those for the 4f3 configuration.
However, its electron number is greater than that of the half-filled shell and so the
larger the J, the lower is the energy. Then its ground state should be 4I15/2.
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In the case of LS coupling, the energy separation of the energy levels with
different total angular quantum number J in the same spectral term 2S+1L has a rule
called Landé interval rule. It can be expressed as DEJ � DEJ�1 ¼ A LSð ÞJ, where
the constant A(LS) depends on the value of LS and their signs determine whether the
electron shell is half-filled or less than half-filled (the electron number in the shell
q � 2l + 1, A(LS) > 0) or greater than half-filled (the electron number in the shell
q > 2l + 1, A(LS) < 0). This rule can be demonstrated as follows.

Owing to the fact that the splitting of the energy levels with different total
angular quantum number J in the same spectral term 2S+1L is the effect of spin–orbit
interaction and proportional to L � S, this energy separation can be written as
DEJ ¼ C LSð ÞL � S: Because of J¼Lþ S; Jj j2¼ Lj j2 þ Sj j2 þ 2L � S and so

L � S ¼ 1
2

Jj j2� Lj j2� Sj j2
� �

¼ �h2

2
J Jþ 1ð Þ � L Lþ 1ð Þ � S Sþ 1ð Þ½ �

DEJ SLð Þ � DEJ�1 SLð Þ ¼ C LSð Þ�h2
2 J Jþ 1ð Þ � J J � 1ð Þ½ � ¼ A LSð ÞJ where

A LSð Þ ¼ C LSð Þ�h2.
However, as will be pointed out in the next section, the energy separation of

different J in the same spectral term 2S+1L will not follow strictly the Landé interval
rule in the case of intermediate-coupling approximation.

It should be pointed out that besides the above-mentioned interaction, the
electrons in the atoms also have smaller inter-configuration interaction, Coulomb
and spin–orbit-correlated interaction, spin–spin interaction as well as spin–other
orbital interaction. We will introduce simply these interactions and their effects in
energy level calculation of rare earth ions in Sect. 1.5.

1.3 Energy Levels of Free Transition-Metal Ions

The transition-metal group discussed here is also called first transition group and
has partially filled electron shell 3dq (q < 10). The LS coupling is suitable for the
electrons in this group especially for their ground configuration. The spectral terms
in 3dq configuration are listed in Table 1.1. For the 3dq with q > 3, two quantum

Table 1.1 Spectral terms of dq electronic configuration [17]

Configuration Spectral term

d1, d9 2D1

d2, d8 1S1, 1D1, 1G1, 3P1, 3F1

d3, d7 2P1, 2D2, 2F1, 2G1, 2H1, 4P1, 4F1

d4, d6 1S2, 1D2, 1F1, 1G2, 1I1, 3P2, 3D1, 3F2, 3G1, 3H1, 5D1

d5 2S1, 2P1, 2D3, 2F2, 2G2, 2H1, 2I1, 4P1, 4D1, 4F1, 4G1, 6S1
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numbers L and S cannot completely discriminate different spectral terms. The right
superscript of the spectral term’s symbol in Table 1.1 denotes the number of
spectral terms with the same quantum numbers L and S. Different spectral terms
with the same quantum numbers L and S should be discriminated by different
irreducible representation symbol of group chain. By using different irreducible
representation symbol in the continuous group chain U 10ð Þ 
 SUð2Þ�
Uð5Þ 
 SUð2Þ � SOð5Þ 
 SUð2Þ � SOð3Þ, different spectral terms of this config-
uration can be completely discriminated. The spectral terms of three 3dq configu-
rations with q = 3, 4, and 5 according to irreducible representation branch of above
group chain are listed in Table 1.2.

The q values for unfilled electron shell 3dq (q < 10) are listed in Table 1.3. Owing
to the fact that 3dq is an outer shell, the crystal field interaction is of the same order of
magnitude as the electron–electron Coulomb interaction (about 104 cm−1). However, it
is much stronger than that of the spin–orbital interaction (about 102 cm−1). Therefore,
energy levels of these ions are strongly affected by the electrostatic field and the
vibration of lattice ions. The energy level structure is very different for different host
materials. It will be discussed later in a single chapter. Only the main features of the
free iron group ions will be introduced here. Slater-Condon parameters Fk were used to
describe the electrostatic interaction but now they are usually replaced by Racah
parameters A, B, and C. The relations between these two kinds of parameters are:

Table 1.2 Classification of the spectral terms in d3, d4, and d5 configuration according to the
reducing branching rule of the group chain U 10ð Þ 
 SU 2ð Þ � U 5ð Þ 
 SU 2ð Þ�
SO 5ð Þ 
 SU 2ð Þ � SO 3ð Þ
Configuration U(10) SU(2) ⊗ U(5) SU(2) ⊗ SO(5) SU(2) ⊗ SO(3)

d3(d7) [13] 2[2, 1] 2(1, 0) 2D
2(2, 1) 2P, 2D, 2F, 2G, 2H

4[1, 1] 4(1, 1) 4P, 4F

d4(d6) [14] 1[2, 2] 1(0, 0) 1S
1(2, 0) 1D, 1G
1(2, 2) 1S, 1D, 1F, 1G, 1I

3[211] 3(1, 1) 3P, 3F
3(2, 1) 3P, 3D, 3F, 3G, 3H

5[1] 5(1, 0) 5D

d5 [15] 2[2, 2, 1] 2(1, 0) 2D
2(2, 1) 2P, 2D, 2F, 2G, 2H
2(2, 2) 2S, 2D, 2F, 2G, 2I

4[2, 1, 1, 1] 4(1, 1) 4P, 4F
4(2, 0) 4D, 4G
6(0, 0) 6S
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A ¼ F0 � 49F4

B ¼ F2 � 5F4

C ¼ 35F4

The energies of the spectral terms of the configurations d2, d3, d4, and d5 can be
expressed and some of them are listed in Table 1.4.

Parameter A contributes the same energy to all the spectral terms in the same
configuration. Parameters B and C can be calculated by radial wave functions Rnl

using some kinds of theoretical model or fitted in comparison to experimental
energy levels. The crystal field energy is generally higher than that of the spin–
orbital interaction for this group of ions and so the spin–orbital splitting should be
calculated after the crystal field energy calculation.

Table 1.5 shows the experienced parameters of B, C, B/C, and spin–orbital
coupling coefficient.
It can be seen from Table 1.5 that electron Coulomb interaction is indeed larger
than that of the spin–orbital interaction for d electrons. Racah parameters for the
same configuration increased with atomic number due to the fact that the increasing
of nuclear charge will cause decrease of the radius of d electron shell and finally
result in a stronger electron Coulomb interaction. On the other hand, the spin–
orbital coupling coefficient of Cu2+ with atomic number 29 is about five times that
of the Ti3+ with atomic number 22, and more than that it increases with Z4 as
pointed out in Sect. 1.3.

Table 1.3 Electronic
configurations of iron group
ions

Ion q

Ti3+, V4+ 1

V3+ 2

V2+, Cr3+, Mn4+ 3

Mn3+ 4

Mn2+, Fe3+ 5

Fe2+, Co3+ 6

Co2+ 7

Ni2+ 8

Cu2+ 9

Table 1.4 Spectral term energy expression of 3dq configuration [17]

d2 d3

3F = A−8B 4F = 3A−15B
3P = A + 7B 4P = 3A
1G = A + 4B + 2C 2H = 2P = 3A−6B + 3C
1D = A − 3B + 2C 2G = 3A − 11B + 3C
1S = A + 14B + 7C 2F = 3A + 9B + 3C

2D = 3A + 5B + 5C ±

(193B2 + 8BC + 4C2)1/2
(continued)
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Table 1.4 (continued)

d2 d3

d4 d5

5D = 6A − 21B 6S = 10A − 35B
3H = 6A − 17B + 4C 4G = 10A − 25B + 5C
3G = 6A − 12B + 4C 4F = 10A − 13B + 7C
3F = 6A − 5B + 5.5C ± 1.5(68B2 + 4BC + C2)1/2

4D = 10A − 18B + 5C
3D = 6A − 5B + 4C 4P = 10A − 28B + 7C

3P = 6A − 5B + 5.5C ± 0.5(912B2 − 24BC
+ 9C2)1/2

2I = 10A − 24B + 8C

1I = 6A − 15B + 6C 2H = 10A − 22B + 10C

1G = 6A − 5B + 3.5C ± 0.5(708B2 − 12BC + 9C2)1/2
2G = 10A − 13B + 8C

1F = 6A + 6C 2G′ = 10A + 3B + 10C

1D = 6A + 9B + 3.5C ±

1.5(144B2 + 8BC + C2)1/2

2F = 10A − 9B + 8C

1S = 6A + 10B + 10C ±

2(193B2 + 8BC + 4C2)1/2

2F′ = 10A − 25B + 10C
2D′ = 10A−4B + 10C

2D = 10A−3B + 11C ± 3(57B2+ 2BC
+ C2)1/2
2P = 10A + 20B + 10C
2S = 10A − 3B + 8C

Table 1.5 Racah parameters and spin–orbital coupling coefficient for d electron (in unit of cm−1)
[18]

Ion (configuration) B C B/C n

Ti3+(3d1) 154

V4+(3d1) 248

Ti2+(3d2) 718 2629 3.66 121

V3+(3d2) 861 4165 4.84 209

Cr4+(3d2) 1039 4238 4.08 327

V2+(3d3) 766 2855 3.73 167

Cr3+(3d3) 918 3850 4.19 273

Mn4+(3d3) 1064 402

Cr2+(3d4) 830 3430 4.13 230

Mn3+(3d4) 965 3675 3.81 352

Fe4+(3d4) 1144 4459 3.90 514

Mn2+(3d5) 960 3325 3.46 347

Fe3+(3d5) 1015 4800 4.73

Fe2+(3d6) 1058 3901 3.69 410

Co3+(3d6) 1065 5120 4.81

Co2+(3d7) 971 4366 4.50 533

Ni3+(3d7) 1115 5450 4.89

Ni2+(3d8) 1041 4831 4.64 649

Cu2+(3d9) 1238 4659 3.76 829
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1.4 Energy Levels of Free Rare Earth Ions

Generally, lanthanide elements (from lanthanum Z = 57 to lutetium Z = 71),
scandium (Z = 21), and yttrium (Z = 39) are referred to as rare earth elements.
Except scandium and yttrium, they have similar electron shell structure, that is, the
divalent and trivalent ions all have partially filled electron shell structure 4f q

(q = 1–13). The 4f electrons of these elements are not in the outer shell but are
shielded by the electron shell 5s25p6, so even in the host materials, their energy
level structure and spectra have similar features compared to those of the free ions.
From another point of view, it has been shown by photoelectron emission exper-
iments that the position of 4f q states in trivalent rare earth compounds is lower than
the top of their valence band by about 5 eV. So, for low 4f q energy levels, the free
ion character can be well maintained. This property can also be explained by the
energies of different interactions. The order of magnitude of electron Coulomb
interaction is 104 cm−1, while the spin–orbital and crystal field interactions are in
the orders of 103 and 102 cm−1, respectively. Using the language of quantum
mechanics, the wave functions of free rare earth ions are very good zero-order wave
functions for the ions in materials. Therefore, having some knowledge about the
free ion’s wave functions would be helpful for the further study of their spectro-
scopic properties in laser materials. In a good enough approximation, the principal
quantum number n and the orbital angular momentum quantum number l can be
still used to describe this multi-electron system, although the radial wave functions
of the rare earth ions are different from those of hydrogen atom and the interaction
between configurations cannot be neglected.

In Table 1.6, 2S+1Ln represents that the spectral terms of 2S+1L appear n times.
The J values corresponding to the different possible states are not shown in the
table. They can be obtained from L and S as follows: J ¼ L� S;
L� Sþ 1; . . .; Lþ S. For example, the spectral term 4D has S = 3/2, L = 2, and
J can be: 1/2, 3/2, 5/2, 7/2, that is, giving rise to states 4D1=2;

4 D3=2;
4 D5=2;

4 D7=2.
When the number of electrons is large, quantum number LS are insufficient to
classify different spectral terms completely. Spectral terms with the same LS
number can appear up to ten times. Therefore, in order to provide a full classifi-
cation of the states in fq configuration, the group representation theory should be
used.

The continuous group, first used by Racah, was introduced by Judd to classify
the states of fq configuration by a group chain of SUð2Þ � Uð7Þ 
 SUð2Þ �
SOð7Þ 
 SUð2Þ � G2 
 SUð2Þ � SOð3Þ [4]. It is enough for readers to understand
that in Table 1.7, [k1, k2, …] is another expression for the total spin quantum
number S; on the other hand, (w1, w2, w3) and (u1, u2) are quantum numbers in
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addition to the LS. With these quantum numbers, one can completely differentiate
all states with the same LS quantum number. For more knowledge one can refer to
books on theory of atomic spectroscopy [4, 6]. Table 1.7 contains the example for
two rare earth configurations.

Three coupling models have been mentioned in the previous discussion, but not
the intermediate-coupling model. However, it should be pointed out that although
in the first-order approximation the LS coupling model can be used to deal with the
energy level analysis of rare earth ions, the spin–orbital Hamiltonian cannot be
neglected. The wave functions of LS coupling model were used as the first-order
approximation wave functions to calculate eigenvalues and eigenfunctions of the
Hamiltonian H0 + Hs0. The eigenfunctions obtained in this way are called
intermediate-coupling wave functions. Some of these wave functions, expressed as
wave functions of LS coupling model for lower spectral terms in the rare earth ions
in laser materials, are listed in Table 1.8.
In this table, wð2Sþ 1LJÞ refers to intermediate-coupling wave functions and
uð2Sþ 1LJÞ denotes the LS coupling wave functions. Some small terms have been
neglected.
It can be seen from Table 1.8 that in the intermediate-coupling wave functions the
spin quantum number difference between the main wave functions and the mixed
wave functions is DS ¼ 1. The reason is when the difference of spin quantum
number between two wave functions is larger or smaller than 1, the matrix element
of the spin–orbital interaction operator between them is equal to zero, so that there
is no spin–orbital mixing. The matrix element of the spin–orbital interaction
operator can be expressed by the formula (2–106) of Wyboune [7]. In Chap. 4, it
will be shown that the transition between the two energy levels with different spin

Table 1.6 Allowed spectral terms for f electrons

f1,
f13

2F1

f2,
f12

1S1, 1D1, 1G1, 1I1, 3P1, 3F1, 3H1

f3,
f11

2P1, 2D2, 2F2, 2G2, 2H2, 2I1, 2K1, 2L1, 4S1, 4D1, 4F1, 4G1, 4I1

f4,
f10

1S2, 1D4, 1F1, 1G4, 1H2, 1I3, 1K1, 1L2, 1N1, 3P3, 3D2, 3F4, 3G3, 3H4, 3I2, 3K2, 3L1, 3M1,
5S1, 5D1, 5F1, 5G1, 5I1

f5, f9 2P4, 2D5, 2F7, 2G6, 2H7, 2I5, 2K5, 2L3, 2M2, 2N1, 2O1, 4S1, 4P2, 4D3, 4F4, 4G4, 4H3, 4I3,
4K2, 4L1, 4M1, 6P1, 6F1, 6H1

f6, f8 1S4, 1P1, 1D6, 1F4, 1G8, 1H4, 1I7, 1K3, 1L4, 1M2, 1N2, 1Q1, 3P6, 3D5, 3F9, 3G7, 3H9, 3I6,
3K6, 3L3, 3M3, 3N1, 3O1, 5S1, 5P1, 5D3, 5F2, 5G3, 5H2, 5I2, 5K1, 5L1, 7F1

f7 2S2, 2P5, 2D7, 2F10, 2G10, 2H9, 2I9, 2K7, 2L5, 2M4, 2N2, 2O1, 2Q1, 4S2, 4P2, 4D6, 4F5, 4G7,
4H5, 4I5, 4K3, 4L3, 4M1, 4N1, 6P1, 6D1, 6F1, 6G1, 6H1, 6I1, 8S1
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quantum number is forbidden except due to the effect of intermediate coupling, the
transition forbidden is partially released. However, for the so-called double-spin flip
transition with DS ¼ 2, the forbidden rule is strictly established.

Figure 1.1 shows that the radii of 5s and 5p shells are larger than that of 4f shell.
However, the quantum defect D decreases with orbital angular momentum l,
5� D 5sð Þ\5� D 5pð Þ\4� Dð4f Þ; so that the energy of 4f electron is higher than
those of 5s and 5p electrons and the electrons will first fill 5s and 5p shells and then
the 4f shell. Therefore, the 4f electrons are in the inner shell with outer filled 5s and
5p shells to shield the interactions of the host materials. So for low 4fq energy
levels, the free ion character can be maintained certainly. In a good enough
approximation, the principal quantum number n and the orbital angular
momentum quantum number l can be still used to describe this multi-electron
system in the host materials, although the radial wave functions of the rare earth
ions are different from those of hydrogen atom and the interaction between
configurations cannot be neglected.

Table 1.7 Classification of the spectral terms in f3 and f4 configuration according to the reducing
branching rule of the group chain SU 2ð Þ � U 7ð Þ 
 SU 2ð Þ � SO 7ð Þ 
 SU 2ð Þ � G2 
 SU 2ð Þ�
SO 3ð Þ
Configuration SU(2) ⊗ U(7) SU(2) ⊗ SO(7) SU(2) ⊗ G2 SU(2) ⊗ SO(3)

f3(f11) 2[2, 1] 2(1, 0, 0) 2(1, 0) 2F
2[2, 1] 2(2, 1, 0) 2(1, 1) 2P, 2H
2[2, 1] 2(2, 1, 0) 2(2, 0) 2D, 2G, 2I
2[2, 1] 2(2, 1, 0) 2(2, 1) 2D2, 2F, 2G, 2H, 2K, 2L
4[13] 4(1, 1, 1) 4(0, 0) 4S
4[13] 4(1, 1, 1) 4(1, 0) 4F
4[13] 4(1, 1, 1) 4(2, 0) 4D, 4G, 4I

f4(f10) 1[22] 1(0, 0, 0) 1(0, 0) 1S
1[22] 1(2, 0, 0) 1(2, 0) 1D, 1G, 1I
1[22] 1(2, 2, 0) 1(2, 0) 1D, 1G, 1I
1[22] 1(2, 2, 0) 1(2, 1) 1D, 1F, 1G, 1H, 1K, 1L
1[22] 1(2, 2, 0) 1(2, 2) 1S, 1D, 1G, 1H, 1I, 1L, 1N
3[2, 12] 3(1, 1, 0) 3(1, 0) 3F
3[2, 12] 3(1, 1, 0) 3(1, 1) 3P, 3H
3[2, 12] 3(2, 1, 1) 3(1, 0) 3F
3[2, 12] 3(2, 1, 1) 3(1, 1) 3P, 3H
3[2, 12] 3(2, 1, 1) 3(2, 0) 3D, 3G, 3I
3[2, 12] 3(2, 1, 1) 3(2, 1) 3D, 3F, 3G, 3H, 3K, 3L
3[2, 12] 3(2, 1, 1) 3(3, 0) 3P, 3F, 3G, 3H, 3I, 3K, 3M
5[14] 5(1, 1, 1) 5(0, 0) 5S
5[14] 5(1, 1, 1) 5(1, 0) 5F
5[14] 5(1, 1, 1) 5(2, 0) 5D, 5G, 5I
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Table 1.8 Some of the intermediate-coupling wave functions of rare earth ions

Ion Intermediate-coupling wave functions

Nd3+ [19] w 4I9=2
� � ¼ 0:9839u 4I9=2

� �� 0:1672u 210ð Þ 21ð Þ2H9=2

� �
þ 0:0580u 210ð Þ 11ð Þ2H9=2

� �
w 4I11=2
� � ¼ 0:9945u 4I11=2

� �þ 0:0369u 210ð Þ 11ð Þ2H11=2

� �
� 0:0964u 210ð Þ 21ð Þ2H11=2

� �
w 4I13=2
� � ¼ 0:9975u 4I13=2

� �� 0:066u 2K13=2
� �

w 4I15=2
� � ¼ 0:9927u 4I15=2

� �þ 0:1201u 2K15=2
� �

wð4F3=2Þ ¼ 0:9685uð4F3=2Þ � 0:0563u 4S3=2
� �þ 0:2268u 210ð Þ 20ð Þ2D3=2

� �
� 0:0622u 2P3=2

� �
� 0:0577u 210ð Þ 21ð Þ2D3=2

� �
Er3+ [20] w 4I15=2

� � ¼ 0:9852u 4I15=2
� �� 0:1708u 2K15=2

� �
w 4I13=2
� � ¼ �0:9955u 4I13=2

� �þ 0:0896u 2K13=2
� �

w 4I11=2
� � ¼ 0:9125u 4I11=2

� �þ 0:1094uð4G11=2Þþ 0:0631u 2I11=2
� �þ 0:3740u 210ð Þ 21ð Þ2H11=2

� �
� 0:1073u 210ð Þ 11ð Þ2H11=2

� �
w 4I9=2
� � ¼ �0:7322u 4I9=2

� �þ 0:2765uð 210ð Þ 20ð Þ2G9=2Þ � 0:2204uð 210ð Þ 21ð Þ2G9=2Þ
þ 0:1953u 210ð Þ 11ð Þ2H9=2

� �
� 0:4125u 210ð Þ 21ð Þ2H9=2

� �
þ 0:3611uð4F9=2Þ

w 4S3=2
� � ¼ 0:8371u 4S3=2

� �� 0:4196u 2P3=2
� �� 0:2666u 210ð Þ 20ð Þ2D3=2

� �
þ 0:2237uð4F3=2Þ

Ho3+ [21] w 5I8
� � ¼ 0:967u 5I8

� �
w 5I7
� � ¼ 0:965u 5I7

� �
w 5I6
� � ¼ �0:976u 5I6

� �
w 5I5
� � ¼ �0:952u 5I5

� �
w 5I4
� � ¼ 0:948u 5I4

� �
w 5S2
� � ¼ 0:841u 5S2

� �þ 0:377u 210ð Þ 11ð Þ3P2
� �

w 5F5
� � ¼ 0:896u 5F5

� �� 0:315u 211ð Þ 21ð Þ3P2
� �

w 5F4
� � ¼ 0:959u 5F4

� �
w 5F3
� � ¼ 0:951u 5F3

� �
w 5F2
� � ¼ 0:794u 5F2

� �� 0:383u 5S2
� �þ 0:345u 211ð Þ 21ð Þ3D2

� �
w 5F1
� � ¼ �0:892u 5F1

� �� 0:384u 211ð Þ 21ð Þ3D1

� �
Tm3+ [20] w 3P0ð Þ ¼ 0:9718u 3P0ð Þ � 0:2354u 1S0ð Þ

w 3P1ð Þ ¼ u 3P1ð Þ
w 3P2ð Þ ¼ 0:7693u 3P2ð Þ � 0:1984u 3F2ð Þ � 0:607u 1D2ð Þ
w 1S0ð Þ ¼ 0:9718u 1S0ð Þþ 0:2354u 3P0ð Þ
w 3F2ð Þ ¼ 0:8769u 3F2ð Þ � 0:1374u 3P2ð Þ � 0:4606u 1D2ð Þ
w 3F3ð Þ ¼ u 3F3ð Þ
w 3H4ð Þ ¼ 0:5282u 3F4ð Þþ 0:7713u 3H4ð Þ � 0:3549u 1G4ð Þ
w 3F4ð Þ ¼ 0:787u 3F4ð Þ � 0:2883u 3H4ð Þþ 0:5454u 1G4ð Þ
w 3H5ð Þ ¼ u 3H5ð Þ
w 3H6ð Þ ¼ 0:9956u 3H6ð Þþ 0:0931u 1I6ð Þ
w 1D2ð Þ ¼ 0:6473u 1D2ð Þþ 0:623u 3P2ð Þþ 0:4378u 3F2ð Þ

(continued)
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Table 1.8 (continued)

Ion Intermediate-coupling wave functions

w 1G4ð Þ ¼ 0:7594u 1G4ð Þþ 0:5674u 3H4ð Þ � 0:3182u 3F4ð Þ
w 1I6ð Þ ¼ 0:9956u 1I6ð Þ � 0:0931u 2H6ð Þ

Pr3+ [20] w 3P0ð Þ ¼ 0:996u 3P0ð Þþ 0:0876u 1S0ð Þ
w 3P1ð Þ ¼ u 3P1ð Þ
w 3P2ð Þ ¼ 0:9592u 3P2ð Þþ 0:2812u 1D2ð Þ
w 3F2ð Þ ¼ 0:989u 3F2ð Þþ 0:1475u 1D2ð Þ
w 3F3ð Þ ¼ u 3F3ð Þ
w 3F4ð Þ ¼ 0:8544u 3F4ð Þþ 0:1035u 3H4ð Þ � 0:5092u 1G4ð Þ
w 3H4ð Þ ¼ 0:9878u 3H4ð Þþ 0:1534u 1G4ð Þ
w 3H5ð Þ ¼ u 3H5ð Þ
w 3H6ð Þ ¼ �0:9985u 3H6ð Þþ 0:0541u 1I6ð Þ
w 1S0ð Þ ¼ �0:9962u 1S0ð Þþ 0:0876u 3P0ð Þ
w 1D2ð Þ ¼ �0:9483u 1D2ð Þþ 0:2823u 3P2ð Þþ 0:1452u 3F2ð Þ
w 1G4ð Þ ¼ 0:8469u 1G4ð Þ � 0:1167u 3H4ð Þþ 0:5188u 3F4ð Þ
w 1I6ð Þ ¼ 0:9956u 1I6ð Þ � 0:0931u 3H6ð Þ

Fig. 1.1 Outer electron shell distribution of rare earth ions
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The lower energy levels of 4f11 configurations of free Er3+ ion and this ion in five
kinds of host crystals, including LaF3, are listed in Table 1.9. One can see from this
table the differences of a given energy level for free Er3+ ion and that this ion in
different crystals is generally less than 100 cm−1; only in few cases is about
200 cm−1. Therefore, in the discussion of an energy level position in different hosts,
their position in LaF3 crystal can be seen as a good reference. Figure 1.2 shows the
energy levels of 13 rare earth ions. This diagram has been frequently referred to in
the literature. It can give us a general idea of the energy level positions for all the
rare earth ions and help us in the analysis of an unknown spectrum and determines
which energy levels are involved in the spectrum. From this diagram, if one con-
siders the Gd3+ ion as a center, it can be seen that the Hund rule is really available
and any spectral terms of a rare earth ion in the left hand position can be found in
another rare earth ion in the corresponding right hand position. However, for the
same spectral term 2S+1L, the lower 2S+1LJ levels in the left-hand side correspond to
the higher 2S+1LJ levels in the corresponding right-hand side. It should also be noted
that the energy separations between different spectral terms 2S+1L and different
2S+1LJ levels in the same spectral term are larger for the rare earth ions in the
right-hand side of Gd3+ ion. It is due to the fact that the Coulomb interaction
between electrons and the spin–orbital interaction are stronger for the rare earth ions
in the right-hand side, because of the effect of lanthanide contraction and the spin–
orbital coupling coefficient is greater for ions of larger atomic number. This ten-
dency can be clearly seen from Fig. 1.3 which shows that the Slater parameter Fk

and spin–orbital coupling coefficient f increase with 4f electron number.
In order to investigate the energy levels of rare earth ions, one should also know

the separation between ground configuration and excited configurations. This is
because the excited configurations have important effects on the ground configu-
ration, which will be discussed in the following. Figure 1.4 is a schematic diagram

Table 1.9 Level energies for the free Er3+ ion and that in five host crystals (unit of cm−1)

Levels Free ion [22] LaF3
[22]

LaCl3
[23]

Cs3Lu2Cl9
[13]

Y2O3

[22]
Y3Al5O12

[24]
4I15/2 0 0 0 0 0 0
4I13/2 6,485 6,480 6,482 6,465 6,458 6,470
4I11/2 10,123 10,123 10,112 10,078 10,073 10,090
4I9/2 12,345 12,350 12,352 12,300 12,287 12,312
4F9/2 15,182 15,235 15,177 15,091 15,071 15,129
4S3/2 18,299 18,353 18,290 18,142 18,072 18,166
2H11/2 19,010 – – 18,944 18,931 18,980
4F7/2 20,494 20,492 20,407 20,292 20,276 20,348
4F5/2 22,181 22,161 22,066 21,939 21,894 21,992
4F3/2 22,453 22,494 22,407 22,301 22,207 22,370
2H9/2 24,475 24,526 24,453 24,339 24,304 24,368
4G11/2 26,376 26,368 26,257 26,116 26,074 26,166
2G9/2 27,319 27,412 – 27,097 – –
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for the separation between 4f electron and some of the excited shells of divalent and
trivalent rare earth ions [8]. Figs. 1.5 and 1.6 are relations between two lowest
configurations for the trivalent rare earth ions and divalent rare earth ions,
respectively.

Ce3+  Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+  Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+  

Fig. 1.2 Energy levels of trivalent rare earth ions
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Fig. 1.3 Relation between
Slater parameter Fk as well as
spin-orbital coupling
coefficient f and the electron
number determined by
experiments on crystals of
LaF3 and LaCl3 [16]

Fig. 1.4 Schematic diagrams
for the separation between
4f electron and some of the
excited shells of the divalent
and trivalent rare earth ions
[8]
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Fig. 1.5 Relation between two lowest configurations of the trivalent rare earth ions [8]
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1.5 Theory of Interactions in Rare Earth Ions

By the end of this chapter, we would like to return to the subject of a series of
interactions in rare earth ions and introduce their effects on the energy level posi-
tions. To investigate the energy levels of multi-electron system, a very good
example is the application of continuous group in spectroscopy. In this field, Racah
in 1940s [9] and Judd in 1950s [6] have performed outstanding works. From the
Hamiltonians used to describe the different interactions in the atoms and the wave
functions classified by Lie group representations, by means of the tensor operator
method established at that time, a series of interaction energies were calculated. We
would like to introduce the parameter method that can describe all these interactions
but not involving too much mathematics. The number of parameters introduced is
the minimum necessary to describe all the interactions. For example, among the
parameters tk used to describe configuration interactions, the effect of t1 and t5 can
be embodied by the electrostatic Coulomb interaction parameters and so they are
omitted.

Fig. 1.6 Schematic diagrams for the separation between two lowest configurations of the divalent
rare earth ions [8]

24 1 Energy Level of Free Ions



As presented previously, Coulomb interaction and spin–orbit interaction can be
taken into account by constructing intermediate-coupling wave functions. The other
method generally adopted is to describe these two interactions by related parame-
ters. The Coulomb interaction in (1.26) is considered individually as

Hee ¼
Xn

i[ j¼1

e2

4pe0ri;j
ð1:34Þ

By applying the following expanded expression

1
rij

¼ 4p
2kþ 1

X
kq

rk\
rkþ 1
[

Y ðkÞ	
q hi;uið ÞY ðkÞ

q hj;uj

� � ð1:35Þ

and

CðkÞ
q r̂ð Þ ¼ 4p

2kþ 1

� �1=2

Y ðkÞ
q h;/ð Þ

for 4fq electronic configuration, Hee becomes

Hee ¼
X

k¼ 0;2;4;6

Fkfk ¼
X

k¼ 0;2;4;6

Fkf
k ð1:36Þ

where

fk ¼ aLSh j
X
i[ j

CðkÞðiÞ � CðkÞðjÞ aLSj i ð1:37aÞ

Fk ¼ e2

2pe0

Z1
0

Z1
0

R2
4f rið ÞR2

4f rj
� � rk\

rkþ 1
[

dridrj ð1:37bÞ

where Fk is called Slater parameter, and another parameter introduced by Condon
and Shortley is Fk. The relations between them can be written as

Fk

Fk
¼ Dk ð1:38Þ

where Dk are Condon-Shortley factors, for 4f electrons

D0 ¼ 1; D2 ¼ 225; D4 ¼ 1089; D6 ¼ 184041=25

Coulomb interaction can also be described by Racah parameters E0, E1, E2, E3

and expressed as
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Hee ¼
X

k¼0;1;2;3

Ekek ð1:39Þ

The matrix elements of ek can be found in the well-known tables provided by
Nielson and Koster [10], f k and ek have the following relations

e0 ¼ f 0 ¼ qðq� 1Þ
e1 ¼ 9

7
f 0 þ 1

42
f 2 þ 1

77
f 4 þ 1

462
f 6

e2 ¼ 143
42

f 2 � 130
77

f 4 þ 35
462

f 6

e3 ¼ 11
42

f 2 þ 4
77

f 4 � 7
462

f 6

ð1:40Þ

where q is the number of electrons in the configuration 4fq. The relations between
Racah parameters and Slater parameters are

E0 ¼ F0 � 10F2 � 33F4 � 286F6

E1 ¼ 70F2 þ 231F4 þ 2002F6

9

E2 ¼ F2 � 3F4 þ 7F6

9

E3 ¼ 5F2 þ 6F4 � 91F6

3

ð1:41Þ

or

F0 ¼ 7E0 þ 9E1

7

F2 ¼ E1 þ 143E2 þ 11E3

42

F4 ¼ E1 � 130E2 þ 4E3

77

F6 ¼ E1 þ 35E2 � 7E3

462

ð1:42Þ

The spin–orbital interaction of the whole atom system can then be obtained by
simply summing (1.2) over all the electrons

Hso ¼
Xn
i¼ 1

n rið Þli � si ð1:43Þ

Integrating over radial variable, it can be expressed as
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Hso ¼ f4f Aso ð1:44Þ

where f4f ¼
R1
0
R2
4f ðrÞnðrÞdr. Aso is the angular operator of spin–orbit interaction

and can be expressed as

AsoðnlÞ ¼ �1ð ÞLþ S0 þ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1ð Þ lþ 1ð Þl

p
dJJ 0dMM0

� L S J
S0 L0 1

	 

sLS V 11ð Þ�� ��s0L0S0D E

Reduced matrix elements of tensor operator V(11) can be found in [10].
Considering 4fq configuration, the calculation of energy levels may have errors

up to several hundreds of cm−1 compared with the experimental results, if only the
above two interactions are included. The reason for this error is the Coulomb
interaction between ground and excited configurations that has not been taken into
account. This interaction can be divided into two kinds, that is, two-body and
three-body interactions. Two-body interaction is written as

Hcc1 ¼ aLðLþ 1Þþ bGðG2Þþ cGðR7Þ ð1:45Þ

where a, b, c are fitting parameters, G(G2) and G(R7) are Casimir operators for Lie
group G2 and R7 with eigenvalues to be found from Tables 2.6 and 2.7 in [7].

The three-body interaction should be considered for configurations having three
or more electrons and it has the following expression introduced by Judd [11]

Hcc2 ¼
X
i

T iti ð1:46Þ

where i = 2, 3, 4, 6, 7, 8, Ti and ti are fitting parameters and operators, respectively.
The operators transformed according to the irreducible representations of group G2

and R7, also called three-body operators and can be found in [7]. Four-body or
many-body interactions can be introduced in the same way, but without substantive
effect on the energy level positions.

Besides spin–orbital interaction expressed by fnl, the magnet interactions of
spin–spin and the spin angular momentum with the orbital angular momentum of
other electrons can be expressed as

Hssþ soo ¼
X

h¼ 0;2;4

Mhmh ð1:47Þ

where mh are effective operators and Mh are relative Marvin integral being written
as follows
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Mh ¼ a2

4

ZZ
ri [ rj

R2
4f rið ÞR2

4f rj
� � rhi

rh þ 3
j

dridrj ð1:48Þ

In order to improve the fitting of f electron spectroscopic data, it is necessary to
introduce three two-body operators to take into account weaker electrostatic and
spin–orbit-correlated interactions, expressed as

Hcc3 ¼
X

k¼ 2;4;6

Pkpk ð1:49Þ

Pk are parameters while pk are two-electron operators depending on the spin angular
momentum and can be found in [12].

Considering all the interactions introduced, the total Hamiltonian of the rare
earth ions can be written as

H ¼
X

k¼2;4;6

Fkfk þ f4f Aso þ aLðLþ 1Þþ bGðG2Þþ cGðR7Þþ
X

i¼2;3;4;6;7;8

Titi

þ
X

k¼ 2;4;6

Pkpk þ
X

h¼ 0;2;4

Mhmh

ð1:50Þ

In this way, the E0, E1, E2, E3, (F0, F2, F4, F6); f; a, b, c; Ti (i = 2, 3, 4, 6, 7, 8);
pk (k = 2, 4, 6); and mk (h = 0, 4, 6), 20 parameters can have a full description of the
energy levels of free rare earth ions. It should be pointed out that compared to the elec-
trostatic Coulomb interaction between electrons and the spin–orbit interaction, the con-
figuration and the relativistic magnetic interactions are much weaker. Moreover, we have

Hcc1 [Hcc2 [Hcc3 �Hssþ soo

Among all the 20 parameters in (1.50), four parameters should be subjected to
the Hartree-Fock restriction [13]

M0 ¼ 1:78M2 ¼ 2:63M4

P2 ¼ 1:33P4 ¼ 2P6

Therefore, there are only 16 independent parameters. After fitting to the experi-
mental energy level data, the values of these parameters for Er3+ ions in three
crystal hosts are listed in Table 1.10.

The relative parameters for Nd3+ in NdAl3 (BO3)4 (NAB) crystal can be found in
[14]. It can be seen that these parameters are not only different for different host but
are different for different sites in the same host. As pointed out by Marshall and
Stuart [15], when a free ion placed in crystal (or liquid), its wave function will
expand into crystal (or liquid). These kinds of expansion will produce the screen of
4f electron by the overlap electron cloud of 4f electron and its ligands, and finally
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result in the decrease of effective nuclear charge. Therefore, Slater parameters and
spin–orbital coupling coefficient fitting by crystal spectral data will be less than
those of free ions. These kinds of wave function expansion obviously will be
different for different media so that the parameters fitting by spectral data of dif-
ferent media have some difference. However, the difference of all the 16 parameters
for different hosts in general is within a range of 1%.
It is clearly shown in Table 1.10 that all the atomic parameters for rare earth ions in
different hosts have nearly the same values. Fitting with so many parameters is
complicated but the results after fitting have not substantially improved, so for the
practical problems of laser materials in which the gravity center of the spectral
terms are non-essential, the atomic parameters can refer to those of other hosts and
fitting only the crystal parameters is enough.
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Chapter 2
Group Theory and Quantum Theory

The electron–electron interaction, electron–nucleus interaction as well as the orbit–
orbit, orbit–spin, spin–spin couplings, and the other complicate interactions of
electrons in free ions have been discussed in Chap. 1. However, the whole system
of the free ion containing all the electrons in it can be seen as a spherical symmetry
system. This is due to the fact that the space of the free ion is isotropic in a good
enough approximation. If the ion is placed in a solid material, this space isotropy
will be generally destroyed by the interactions between the ions and the environ-
ment. The energy of the electrons in different states will be different because the
interactions are different for different relative positions (relative distance or angle)
between the electrons of ion studied and the lattice ions. This also means the
elimination of energy level degeneracy of the free ions. It can be seen that the
symmetry of the interactions plays a very important role in the determination of the
electron energy states. Therefore, some knowledge of group theory and related
quantum theory should be introduced before a detailed discussion of the electron
energy level.

2.1 Mathematical Description of the Symmetry

Let us consider a simple cubic lattice; the ion distribution is shown in Fig. 2.1.
In this special situation, the cube shown can represent the distribution of the ions

in space. Therefore, one can find out about the local symmetry of the crystal by
investigating only the ion’s distribution in this cube. Obviously, if the cube is
rotated around an axis passing through the centers of opposite faces, such as a axis,
by 90°, 180°, or 270°, the distribution of the ions in the cube and in the whole
lattice will not be changed. This is to say that a is one of the symmetry axis.
Moreover, because the angle rotated around this axis is an integral multiple of 2p/4,
it is called fourth-order axis and denoted by C4. Similarly, the b and c axes which
pass through the centers of the other two sets of opposite faces are also fourth-order
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axes. On the other hand, if the cube is rotated 120° or 240° around the axes passing
through the opposite corners of the cube, that is, axes d, e, f, and g then the ion’s
distribution has no variation. It is to say that d, e, f, and g are third-order axes and
denoted by C3. In the same way, six axes passing through the midpoints of opposite
edges of the cube are second-order axes and denoted by C2. It means that the
configuration will not be changed by the rotation of 180°. Besides, the inversion
through the center of the cube and the reflection on the planes rh perpendicular to
the fourth-order axes or rv passing through each pair of opposite edges are also
symmetry elements of the cube. It should be noted that most of symmetry axes and
symmetry planes include not only one symmetry element. For example, the three
fourth-order axes include rotations of 90°, 180°, and 270°, that is, nine symmetry
elements C4(3), C2

4ð3Þ, and C3
4ð3Þ. Similarly, four third-order axes include eight

symmetry elements C3(4) and C2
3ð4Þ coming from rotations of 120° and 240°,

respectively. The figures inside the brackets indicate the number of symmetry
elements. On the other hand, the combination (product) of two symmetry elements
will generate a new symmetry element. For example, the combination of
fourth-order axes and the symmetry planes generate fourth-order rotation–reflection
axes S4(6), and the combination of third-order axes and the symmetry planes
generate eight sixth-order rotation–reflection axes S6(8). Therefore, including the
identity element E, there are all together 48 symmetry elements divided into ten
classes in this symmetry group:

E;C2ð6Þ;C3;C
2
3ð8Þ;C4;C

3
4ð6Þ;C2

4ð3Þ; I; rvð6Þ; rhð3Þ; S6; S56ð8Þ; S4; S34ð6Þ

It can be found that a symmetry element in one class can be transformed into a
symmetry element in the same class by combining with some symmetry element in
other class. For example, eight symmetry elements C3 and C2

3 can be transformed
into each other by C4 and C2, as well as C4 and C3

4 can be transformed into each
other by C2. On the other hand, C4 axes with different orientations can be

a

b

c

d e

f
gFig. 2.1 Distribution of ions

in a simple cubic lattice
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transformed into each other by C3 and so on. The symmetry axes in the same class
rotate with the same angle; the difference is only the orientation of axes. Therefore,
one can say that the symmetry elements in the same class are equivalent. We will
see it more clearly later and find that any two successive transformations always can
be replaced by one single transformation and any transformation always has a
corresponding inverse transformation. In mathematical language, these 48 elements
constitute a symmetry group denoted by Oh. The group theory is a mathematical
tool to investigate the symmetry of a system and the effects of this symmetry on the
characteristics of the system. Almost all the characteristics of the micro-systems
have very close relations with its symmetry and so group theory is a powerful tool
in dealing with these problems. This is the main reason why we will introduce the
basic knowledge of group theory in the following.

2.2 Basic Conception of the Group

By considering every symmetry element as an element of a group, from the
example given above, one can see that the elements of a group have the following
properties:

(1) The product of any two elements, which is defined as two successive trans-
formations, is also an element of the group.

(2) Each group includes an identity element E which satisfies (AE) = (EA) for any
element A in the group.

(3) For any element A in the group, there is an inverse element A−1 in the same
group satisfying AA−1 = E.

(4) For the multiplication of elements, the associative law is valid A BCð Þ ¼ ABð ÞC.
The last property cannot be directly seen from the example given. This is because
the multiplication table of those group elements still has not been given. It is
complicate to make the multiplication table for such a group of 48 elements.
However, we can discuss it by using a simple example related to the symmetry
elements of a regular triangle. These symmetry elements constitute a group denoted
by C3v. From Fig. 2.2, it can be seen that this group has the following elements:
(1) Unit operation (identity transformation) E; (2) Clockwise rotation through 120°
around z-axis: C3; (3) Counter-clockwise rotation through 120° or clockwise
rotations through 240° around z-axis: C2

3; (4) Reflection about plane Z1: r1;
(5) Reflection about plane Z2: r2; (6) Reflection about plane Z3: r3.

It is easy to see that these elements satisfy multiplication table (Table 2.1). It can
be seen from this table that the association law ðC3r1Þr2 ¼ r3r2 ¼ C2

3 ¼ C3ðr1r2Þ
is satisfied. On the other hand, r1r2 = C3, but r2r1 ¼ C2

3, so the product is different
for different orders of the multiplication. The elements r1 and r2 are said to be
non-commutative. If all the elements of a group are commutative, then the group is
called Abelian.
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One can introduce the concept of the class by investigating this simple group. By
applying the above multiplication table, one has:

C�1
3 ¼ C2

3; ðC2
3Þ�1 ¼ C3;r

�1
1 ¼ r1; r

�1
2 ¼ r2; r

�1
3 ¼ r3

and so

EC3E ¼ C3;C
�1
3 C3C3 ¼ C3; C2

3

� ��1
C3C

2
3 ¼ C3; r

�1
1 C3r1 ¼ C2

3 ; r
�1
2 C3r2

¼ C2
3; r

�1
3 C3r3 ¼ C2

3 ;

Similarly, when A in G-1AG is replaced by C2
3, G being all the elements in the

group, the results obtained are still C3 and C2
3. G

-1AG is called the conjugate of
A. According to the definition of group theory, if some elements in a group are
conjugate to each other, then these elements form a class in the group. Obviously,
C3 and C2

3 form a class in the group C3v. It can also be shown that r1, r2, and r3
form another class. If two symmetry operations belong to the same class, then one
operation is replaced by the other in a new coordinate system. For example, in the
case considered, one can rotate the triangle counter-clockwise of 120°; then the
operation r1 in the rotated system is equal to the operation r2 in the old system.
Any group can be decomposed into non-overlapping classes, which cover all the
elements of the group. For an Abelian group, G-1AG = AG-1G = A, and so each of
the group element forms a class.

We would like to introduce here the concept of order. The number of elements in
a group is the order of the group. If an element A in the group has relation An = E,

Fig. 2.2 Symmetry elements
in a regular triangle

Table 2.1 Multiplication
table of C3v group

E C3 C2
3 r1 r2 r3

E E C3 C2
3 r1 r2 r3

C3 C3 C2
3 E r3 r1 r2

C2
3 C2

3 E C3 r2 r3 r1

r1 r1 r2 r3 E C3 C2
3

r2 r2 r3 r1 C2
3 E C3

r3 r3 r1 r2 C3 C2
3 E
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then n is called the order of element A. When B and A are in the same class, then we
have:

Bn ¼ G�1AG
� �n¼ G�1AGG�1AGG�1. . .G ¼ G�1AnG ¼ G�1EG ¼ G�1G ¼ E

It means that the elements in the same class have the same order.
Another important concept in the group theory is the subgroup. If one set of the

elements H of a group G has all the four properties of the group mentioned above,
then H is a subgroup of the group G. For example, suppose E, C3, C2

3 is a subgroup
of group C3v, then all the products and the inverse of these elements are in the
subgroup. Note that C3

3 ¼ E and so all the elements in the subgroup can be
expressed as some integer power of one element of this subgroup. If all the ele-
ments in a group are integer power of a given element, then this group is cyclic.
Therefore, the above-mentioned subgroup is a cyclic group with order 3. Group C3v

has five subgroups as follows:

fEg; E; r1f g; E; r2f g; E; r3f g; E;C3;C
2
3

� �

It is useful to point out without proof that if the order of a group is a prime number,
then this group is a cyclic group. The order of subgroup {E, C3, C2

3} is 3, so that it
is a cyclic group.
If the subgroup H in the group G is self-conjugated to any element g in group G,
that is, g−1H g = H, then subgroup H is called an invariant subgroup of the group
G. The subgroup {E, C3, C2

3} satisfies this condition and is an invariant subgroup of
the group C3v.

Factor group is another important concept in the group theory. In order to
introduce this concept, it is necessary to mention about coset. If H is a subgroup of a
group G, then from an element g in G but not in H, one can form a set of elements
as follows

gH ¼ gha ha 2 Hjf g

It is defined as the left coset of H. The right coset of H can be formed similarly

Hg ¼ hag ha 2 Hjf g

Obviously, if H is an invariant subgroup, then the left coset should be equal to the
right coset and it is not necessary to distinguish between the left and the right coset.
In this case, if one considersH as an element of the group, then all the cosets ofH are
also the elements of the group. The new group formed in this way is called a factor
group and denoted by G/H. For example, for invariant subgroup H ¼ fE;C3;C2

3g in
C3v, H and {r1, r2, r3} constitute a factor group of order two.
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2.3 Theory of Group Representations

The representation of a group is a method to embody the concept of the group
elements. It relates the abstract group elements to the concrete symmetry operations
and is an important way for the application of the group theory to spectroscopy.

Abstractly, if any set of elements can be in correspondence with the elements of
the group and if the same multiplication table can be applied, then this set of
elements is a representation of the group. There are two kinds of correspondence in
group theory, one is homomorphism, and the other is isomorphism. If the set of
elements G′ and the set of elements G (a group) have the same multiplication table
and the following correspondence relation:

A ! A0
1;A

0
2. . .A

0
i;B ! B0

1;B
0
2. . .B

0
i;AB ! A0

1B
0
1;A

0
2B

0
2; . . .;A

0
iB

0
i

where A, B,… are elements of G and A0
1;B

0
1;A

0
2;B

0
2; . . . are elements of G′, then G is

said to be homomorphism to G′. If there is a one-to-one correspondence, then G is
said to be isomorphism to G′. Obviously, isomorphism is also homomorphism, but
homomorphism is not necessarily isomorphism. Two isomorphic groups have
completely the same structure and have not any difference from the point of view of
group theory. The aforementioned symmetry elements of a regular triangle and the
following matrices are two isomorphic groups.

E , 1 0
0 1

� �
; r1 , 1 0

0 �1

� �
; r2 ¼ �1

2

ffiffi
3

p
2ffiffi

3
p
2

1
2

� �
;

r3 ¼ �1
2 � ffiffi

3
p
2

� ffiffi
3

p
2

1
2

� �
;C3 ¼ �1

2

ffiffi
3

p
2

� ffiffi
3

p
2 �1

2

� �
;C2

3 ¼ �1
2 � ffiffi

3
p
2ffiffi

3
p
2 �1

2

� �

It is a general way to use matrices in the linear space to represent a group. The
transformations in the n-dimensional space Vn form a group designated by G. If one
chooses a set of base functions for Vn, then each transformation will be represented
by an n � n matrix. The set of matrices representing the linear transformation will
form a matrix representation of G and the base functions are said to form the bases
of the representation. The matrix representation of G: M(A), M(B), M(C), … have a
one-to-one correspondence with elements A, B, C, … of G and they are multiplied
according to the same multiplication table

AB ¼ C ! MðAÞMðBÞ ¼ MðCÞ; AA�1 ¼ E ! MðAÞMðAÞ�1 ¼ MðEÞ

The representation matrices depend, in general, on the bases chosen for Vn. From
linear algebra one knows that the matrices are transformed according to
M0 Bð Þ ¼ S�1M Bð ÞSM0 Að Þ ¼ S�1M Að ÞS, and so on, when the bases transform by
S. These kinds of transformations are defined as similarity transformation. It is easy
to show that M′ also forms a representation of the group G
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M0ðAÞM0ðBÞ ¼ S�1MðAÞSS�1MðBÞS ¼ S�1MðAÞMðBÞS ¼ S�1MðABÞS ¼ M0ðABÞ

Two representations which differ only by a similarity transformation are said to be
equivalent.

It should be pointed out that many linear transformations in physics keep the
inner product of two vectors invariant. It is to say that for any two vectors x and y,
the following equation is always valid:

ðMx;MyÞ ¼ ðx; yÞ

This transformation M is a unitary transformation and the transformation matrix of
the unitary matrix satisfies

M þM ¼ MM þ ¼ 1

where M+ is transposed complex conjugate of matrixM. It can be shown [1] that for
a finite group, every representation is equivalent to a unitary representation.

If a matrix M can be expressed as

MðRÞ ¼ M1ðRÞ
0

				 0
M2ðRÞ

� �
ð2:1Þ

and it is also written as

MðRÞ ¼ M1ðRÞ�M2ðRÞ ð2:2Þ

then the matrix M is said to be reducible representation. In some cases, M1(R) and
M2(R) can still be written into above direct summation further. When the matrix
M cannot be reduced, then it is said to be an irreducible representation. A series of
properties of the irreducible representation are very important in the application of
group theory. Some orthogonal relations are given here without proof.

If Ma(R) and Mb(R) are two irreducible representations for the group G, then
their matrix elements have the following relation

X
R

MaðRÞ�ikMbðRÞlj ¼
go
na

dabdildkj ð2:3Þ

where go is the order of group G and na is the dimension of irreducible represen-
tation. If irreducible representation a is non-equivalent to irreducible representation
b, then dab = 0. Equation (2.3) can be introduced by Shur lemma [1, 2].

Matrices of an irreducible representation are dependent on the choice of basis.
However, the summation of diagonal matrix elements—the trace of the matrix
(called the character of irreducible representation in group theory)—is independent
of the basis chosen. It is easy to show in mathematics that the character v Rð Þ ¼P

i M Rð Þii does not change in the transformation of the coordinate. If
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M0ðRÞ ¼ S�1MðRÞS

then

v0ðRÞ ¼
X
i

M0ðRÞii ¼
X
i

ðS�1MSÞii ¼
X
imn

ðS�1ÞimMmnSni ¼
X
mn

ðSS�1ÞnmMmn

¼
X
mn

dmnMmn ¼
X
m

Mmm ¼ vðRÞ

Obviously, any two elements A and B in the same class can be written as
A = S−1BS, and so the group elements in the same class have the same character.
Two non-equivalent irreducible representations have different characters. Let k = i
and l = j, then (2.3) becomes

X
R

MaðRÞ�iiMbðRÞjj ¼
go
na

dabdij ð2:4Þ

Summing over i and j in the above equation, then

X
R

vaðRÞ�vbðRÞ ¼ godab ð2:5Þ

Owing to the fact that the characters of the elements belonging to the same class
are the same, if there are hi elements in a class Ci, then the summation over the
elements of the group can be changed to the summation over the classes of the
group. If there are r classes in the group, then

Xr

i¼1

hivaðCiÞ�vbðCiÞ ¼ godab ð2:6Þ

By using orthogonal relation (2.5), one can obtain the number of times li that a
particular irreducible representation appears in any reducible representation. One
has

vðRÞ ¼
X
i

liviðRÞ

and

li ¼ 1
go

X
R

v Rð Þ�vi Rð Þ ð2:7Þ

In addition, if a representation is irreducible, then
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X
R

vðRÞ�vðRÞ ¼ go

because

X
R

vðRÞ�vðRÞ ¼
X
Rij

liviðRÞljvjðRÞ ¼ go
X
ij

liljdij ¼ go
X
i

l2i

If the representation is irreducible, then v(R) cannot be decomposed into a sum of
several terms, that is, the only solution is l1 = 1, and so

P
i l
2
i ¼ 1.

By means of (2.3) and (2.6), the following two important properties of irre-
ducible representation can also be introduced:

(a) The sum of the squares of the dimensions of all irreducible representations is
equal to the order of the group.

(b) The number of different irreducible representations is equal to the number of
classes in the group.

The first property can be shown by (2.3). Suppose Ma(R)ik forms a go-dimensional
vector (the group element R has go elements, it constitutes a go-dimensional space).
This vector is orthogonal, according to (2.3), to all other go-dimensional vectors
formed by Ma(R)lj. There are n2a such orthogonal vectors. Besides, there are n2b and

n2c vectors formed by Mb(R) and Mc(R), respectively, and all these vectors are

orthogonal to each other. The total number of orthogonal vectors is
P
i
n2i and it is

obviously equal to g0, and so

X
i

n2i ¼ g0

The second property can be demonstrated by rewriting (2.6) as

Xr

i¼1

vaðCiÞ� hi
g0

� �1=2

vbðCiÞ hi
g0

� �1=2

¼ dab ð2:8Þ

where va Cið Þ� hi
g0


 �1=2
can be considered as an r-dimensional vector (there are r

classes in the group). Equation (2.8) means that the vectors formed by non-
equivalent irreducible representations are orthogonal. If the number of
non-equivalent irreducible representations is n, then n = r, because the orthogonal
vector in an r-dimensional space is r.
These two properties are very useful in determining the character table of irre-
ducible representations.
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2.4 Direct Product Group and Direct Product
Representation

One way to construct a complicate group from simple groups is to form a product
group. If one has two groups G1 and G2

G1 ¼ E1;A1;B1;C1. . .

G2 ¼ E2;A2;B2;C2. . .

then all the products R1R2 between the elements of the two groups are commutative

R1 R2 ¼ R2R1

If R1 and R2 are represented by matrix M(R1) and matrix M(R2), respectively, then
the direct product G1 ⊗ G2 is represented by matrices M(R1) ⊗ M(R2) with g1g2 �
g1g2 elements. Obviously, their characters have the following relation

v G1 �G2ð Þ ¼ v G1ð Þ � v G2ð Þ ð2:9Þ

As an example to construct a complex group from simple groups, we will
discuss the construction of D3h from D3 and C1h. The group C1h contains only a unit
element and a symmetry plane, while the group D3 includes a unit element, a
third-order axis, and a second-order axis perpendicular to the third-order axis.
Another two second-order axes will be generated by the third-order axis. Their
characters tables are Tables 2.2, 2.3.

The characters table of D3h = D3 ⊗ C1h is (Table 2.4).
Similarly, other groups can also be formed by direct product, such as
C4h ¼ C4 �Ci;C6h ¼ C6 � Ci, S6 ¼ C3 � Ci;D3d ¼ D3 � Ci, D2h ¼ D2 � Ci;
D4h ¼ D4 � Ci, D6h ¼ D6 � Ci;Oh ¼ O � Ci; Th ¼ T � Ci.

The direct product representation for a group can be formed from two different
irreducible representations of the same group. The character of the direct product
representation can be easily shown as the product of two characters of the related
irreducible representations, that is

v cð Þ ¼ v a� bð Þ ¼ v að Þ � v bð Þ ð2:10Þ

This direct product representation is generally reducible and the numbers of irre-
ducible representation contained can be calculated by the above-mentioned

Table 2.2 Characters table
of C1h group

C1h E rh
A′ 1 1

A″ 1 −1
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orthogonal relations. If one uses Cabc to express the number of c irreducible rep-
resentation contained in the direct product representation a ⊗ b, then

Cabc ¼ 1
g0

X
R

vc Rð Þ�va Rð Þvb Rð Þ ð2:11Þ

To investigate the properties of a quantum system, the wave functions of the
system are always expressed as products of those of the subsystems. For example,
electronic wave function is a product of orbital wave functions and spin wave
functions, and multi-electron wave function is a product of single-electron wave
functions. A representation for a system can be expressed as a product of those of
its subsystems. If the first function belongs to representation a and the second one
belongs to representation b, then the product function belongs to the representation
a ⊗ b. In the application of group theory, we often express the direct product wave
function as a linear combination of wave functions belonging to different irre-
ducible representations. For this purpose we use the Clebsch-Gordan coefficients
(C-G coefficients) as the combination coefficients. They will be discussed in detail
later.

2.5 Sketches of the Group in Spectroscopy

2.5.1 Finite Group

Finite group is the group with finite number of elements; among this, the point
group and the space group are most frequently used in physics.

Table 2.3 Characters table of D3 group

D3 E 2C3 3C2′

A1 1 1 1

A2 1 1 −1

E 2 −1 0

Table 2.4 Characters table of D3h group

D3h = D3 ⊗ C1h E rh 2C3 2S3 (rh)C3 3C0
2 3rvðrhC0

2Þ
A0
1ðA0 � A1Þ 1 1 1 1 1 1

A0
2ðA0 � A2Þ 1 1 1 1 −1 −1

A00
1ðA00 � A1Þ 1 −1 1 −1 1 −1

A00
2ðA00 � A2Þ 1 −1 1 −1 −1 1

E0ðA0 � EÞ 2 2 −1 −1 0 0

E00ðA00 � EÞ 2 −2 −1 1 0 0
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1. Point group and space group

Point groups have been mentioned many times in the above discussion, which is a
symmetry group of finite bodies having at least one point fixed. In crystal, point
group is the set of symmetry elements of lattice points and will be discussed in a
separate section. Space group is the symmetry group of configuration in space.
Crystallographic space group includes all the symmetry elements in crystal and can
describe the symmetry of whole crystal lattice. Symmetry elements of space group
can be expressed by {a|n}, where {e|0} is identity element and {a|0} is symmetry
operation for some fixed point, that is, the symmetry operation of point group while
{e|n} is symmetry operation of pure translation group. Multiplication is defined as
fajngfbjn0g ¼ fabjan0 þ ng, and the inverse element is fajng�1fa�1j � a�1ng,
owing to the fact that fajngfajng�1 ¼ fajngfa�1j � a�1ng ¼ faa�1j �
aa�1nþ ng ¼ ej0f g. It can be easily demonstrated that the associative law of
multiplication is also valid and the four criteria of groups are all satisfied.

Because of the limit of lattice translation symmetry, the point group {a|0} in
crystal can only be one of 32 kinds of point group, and conversely, by the limit of
{a|0}, {e|n} should belong to one of 14 kinds of Bravias lattice. The 32 point groups
combine with 14 Bravias lattices and form 230 space groups, which include 73
symmorphic space groups and 157 non-symmorphic space groups and can be
divided into seven crystallographic systems. The symmorphic space groups are
composed of all the symmetry elements of one translation group and one point
group, while the non-symmorphic space groups include screw axis (a rotation
through an angle u about symmetry axis followed by a fractional lattice vector
translation along this axis) and glide reflection plane (a plane reflection followed by
a fractional lattice vector translation parallel to this plane). The translation lattice
vector may not necessarily be a Bravias lattice vector. The point groups, Bravias
lattices, and the number of space group for seven crystallographic systems are listed
in Table 2.5. It should be noted that a crystal belonging to a certain space group of a
certain crystallographic system does not mean that all the lattice points have the
point symmetry belonging to that crystallographic systems. For example, the laser
crystal YAG (Y3Al5O12) belongs to space group Ia3d (Oh

10), but the trivalent Y3+

ions occupy site A with point symmetry of D2, and the trivalent Al3+ ions occupy
two kinds of sites. Among these the site B has point symmetry of S6 and the site C
has point symmetry of S4, but the point symmetry of divalent anion O2− is S2. The
possible lattice point symmetry of the entire space group can be found in books or
data compilation of crystallography.

Space group is an important theoretical tool for crystallography and solid-state
physics, especially the band theory of the solid and lattice vibration spectroscopy.
This book is mainly concerned with the energy levels of local optical centers and
transition between these energy levels; therefore, the knowledge of space group has
only a brief introduction.
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2.5.2 Permutation Group

Permutation symmetry is the symmetry of quantum system consisting of identical
particles. For example, in the 3dq and 4fq configuration of transition-metal ion and
rare earth ion, the q electrons in these systems have permutation symmetry.
Therefore, the permutation group has important application in the spectroscopy of
these ions.

Permutation group with n elements is usually denoted by Sn. In order to dif-
ferentiate from symbol of relate point group, the symbol of permutation group is
adopted as follows

Pn ¼ 1 2 . . . n
a1 a2 . . . an

� �

where Pn denotes the permutation of 1 by a1, 2 by a2…, n by an. The order of two
permutation product PP′ is defined from the right to the left, for example

1
2

2
1

3
3

� �
1
2

2
3

3
1

� �
¼ 1

1
2
3

3
2

� �

Table 2.5 Point groups, Bravias lattices, and number of space group for seven crystallographic
systems

Crystal
system

Point group Bravias lattice Number of space
group

Triclinic C1, S2 Simple triclinic Symmorphic 2

Monoclinic C2, C1h, C2h Simple and end-centered monoclinic Symmorphic 6,
non-symmorphic 7

Orthorhombic D2, C2v, D2h Simple, end-centered,
body-centered, and face-centered
orthorhombic

Symmorphic 13,
non-symmorphic
46

Tetragonal C4, S4, C4h, D4,
C4v, D2d, D4h

Simple and body-centered tetragonal Symmorphic 16,
non-symmorphic
52

Trigonal C3, S6, D3, C3v,
D3d

Simple trigonal Symmorphic 13,
non-symmorphic
12

Hexagonal C6, C3h, C6h, D6,
C6v, D3h, D6h

Simple hexagonal Symmorphic 8,
non-symmorphic
19

Cubic T, Th, O, Td, Oh Simple, body-centered and
face-centered cubic

Symmorphic 15,
non-symmorphic
21

2.5 Sketches of the Group in Spectroscopy 43



and the product of P′P is

1
2

2
3

3
1

� �
1
2

2
1

3
3

� �
¼ 1

3
2
2

3
1

� �

This result shows that the permutation does not satisfy the commutative law but it is
easy to show that the associative law is valid and other requirements of group are all
satisfied. The identity element is

Pð0Þ
n ¼ a1 a2 . . . an

a1 a2 . . . an

� �

If

Pn ¼ b1 b2 . . . bn
a1 a2 . . . an

� �

then the inverse element will be

P�1
n ¼ a1 a2 . . . an

b1 b2 . . . bn

� �

because the P�1
n satisfies the following expression

PnP
�1
n ¼ b1 b2 . . . bn

a1 a2 . . . an

� �
a1 a2 . . . an
b1 b2 . . . bn

� �
¼ a1 a2 . . . an

a1 a2 . . . an

� �

¼ Pð0Þ
n

The group element number of permutation Pn is n!, that is, the order of group Pn

is n! Any permutation can be resolved into cycles which affect only a smaller fixed
number of elements; for example, a P8 can be resolved as follows

1 2 3 4 5 6 7 8
2 3 1 5 4 7 6 8

� �
¼ 123ð Þ 45ð Þ 67ð Þ 8ð Þ

The cycles in the right-hand side of the above expression have no common sym-
bols. Permutations with same cycle structure belong to the same class of the
group. Cycle structure can be written as

ðmÞ ¼ 1m1 ; 2m2 ; . . .; nmnð Þ

It expresses that the cycle structure of permutation has m1 1-cycle (unchanged), m2
2-cycles (transposition), …, mn n-cycles. The length of all the cycles satisfies

44 2 Group Theory and Quantum Theory



Xn
i¼1

imi ¼ n

The number of permutation group Pn with cycle structure (m) can be expressed as

N mð Þ ¼ n!
1m1m1!2m2m2!. . .nmnmn!

For example, the 4-symbol permutation group P4 can be divided into five classes
and have altogether 4! = 24 elements:

1. Identity element Pð0Þ
4 ¼ 1ð Þ 2ð Þ 3ð Þ 4ð Þ—N mð Þ ¼ 4!

144! ¼ 1
2. (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2), (234)(1), (243)(1)

—N mð Þ ¼ 4!
111!311! ¼ 8

3. (12)(34), (13)(24), (14)(23)—N mð Þ ¼ 4!
222! ¼ 3

4. (12)(3)(4), (13)(2)(4), (14)(2)(3), (23)(1)(4), (24)(1)(3), (34)(1)(2)
—N mð Þ ¼ 4!

121212! ¼ 6
5. (1234), (1243), (1324), (1324), (1423), (1432)—N mð Þ ¼ 4!

411! ¼ 6

The class of Pn can generally be expressed by using partition [k] = [k1k1…kn],
where

k1 ¼ v1 þ v2 þ � � � þ vn
k2 ¼ v2 þ v3 þ � � � þ vn
. . .. . .. . .. . .. . .. . .. . .

kn ¼ mn

Because mi is a positive number, so k1 � k2 � � � � kn � 0, and also
k1 þ k2 þ � � � þ kn ¼ n. The possible class number of Pn is determined by the
number of partition. Group theory uses Young diagrams to express partition
½k	 ¼ k1k1. . .kn½ 	, where there are k1 cells in the first row and k2 cells in the second
row, and so on. For example, for S4, its first class can be written as [1111] = [14],
the second class [31], the third class [22] 
 [22], the fourth class [211] 
 [212], and
the fifth class [4]. Their Young diagrams shown follow from left to right for the first
to fifth class. It should be pointed out that there is a requirement that no lower row
can be longer than upper row.

When the symbols of 1, 2, 3, 4 are placed into the Young diagram, one can
obtain a table called Young tableau. If the numbers in a Young tableau are arranged
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so that they increase from left to right and from top to bottom, the tableau is called a
standard Young tableau. For example, the partition [212] has three standard Young
tableaux as follows

1 2

3

4

1

2

3

4

1

2

3

4

It can be demonstrated that the number of standard Young tableau can be
generated from a given Young diagram which is equal to the dimensions of the
corresponding irreducible representation. For example, the dimension of partition
[212] is 3 due to the fact that it has the above three standard Young tableaux. The
method of using Young tableau to introduce the characters of irreducible repre-
sentation can be referred from the books of group theory [1].

By Cayley theorem, any n order group isomorphism with one subgroup of
permutation group Pn and the irreducible representation of unitary group U(n) and
special unitary group SU(n), which have important application in physics, can be
obtained by using irreducible representation of Pn. Therefore, permutation group is
very important not only in mathematics but also in physics.

2.5.3 Continuous Groups

The groups in which elements can be labeled by continuously varying parameters
are called as continuous groups. They have infinite elements. It can be found in
linear algebra that n dimension vector can be transformed by the following relation

y ¼ Ax; z¼By ) z ¼ Cx; C ¼ BA

where A, B, and C are matrices of n line and n row. It is easy to show that the
transformation matrices form a group due to the fact that the unit matrix
I corresponds to the identity element, the product of two transformation matrices is
in this matrix set, and the transformation of vector y into vector x satisfies the
inverse transformation relation A−1A = I, as well as the associative law of multi-
plication is valid. Rotation group SO(3) which transforms one vector into another
vector in three-dimensional space is the simplest example, in which the rotation
angle is expressed as Euler angle. a, b, c obviously can be continuously varied, that
is, it has infinite number. If the angle parameters of matrix A are a, b, c, matrix
B are a1, b1, c1, and matrix C are a2, b2, c2, then the angle parameters of matrix
C can be expressed by those of matrices A and B; for example,
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sinb2 ¼ sinbcosa1cosb1 þ cosb coscsinb1 � sincsina1cosb1ð Þ

Continuous groups commonly used in spectroscopy are:
Groups of U(n) and SU(n)—n � n unitary matrix set constitutes the n dimension
unitary group U(n), where the condition of a matrix A to be a unitary will be

AþA¼I; i:e: AþAð Þij¼
X
k

Aþð ÞikAkj ¼
X
k

A�
kiAkj ¼ dij

(Matrix A+ is the conjugate transposed matrix of matrix A)

It has n2 independent real parameters. On the other hand, all the n � n unitary
matrices with determinant equal to +1 constitute special unitary group SU(n) having
n2 − 1 independent real parameters.

Group O(n) and SO(n)—n � n real orthogonal matrices constitute an n dimen-
sion real orthogonal group O(n), where the matrix A satisfies

AtA ¼ I; i:e: AtAð Þij¼
X
k

Atð ÞikAkj ¼
X
k

AkiAkj ¼ dij

(Matrix At is the transposed matrix of matrix A)

Its group elements are described by n(n − 1)/2 independent real parameters. Among
the O(n) groups, the n�n real orthogonal matrices with their determinants equal to
+1 constitute the n dimension special real orthogonal group SO(n). Group O(n) is
defined in real number field but group U(n) is defined in complex number field so
that group O(n) is the subgroup of group U(n). The group SO(n) is a special group
of the group O(n), and it is certainly a subgroup of group O(n). On the other hand,
group O(n) is a subgroup of the group U(n) and SU(n) is a subgroup of U(n) group
with determinant equal to +1; therefore, the group SO(n) is the common subgroup
of groups O(n) and SU(n). One example of the application of continuous group in
spectroscopy is that mentioned in Chap. 1 about the classification of the spectral
terms of nlq configuration. By introducing high-order continuous group U(4l + 1)
(group SO(3) is its subgroup), one can use different irreducible representation of
following group chain

Uð4lþ 1Þ � SUð2lþ 1Þ � SUð2Þ � SOð2lþ 1Þ � SUð2Þ � SOð3Þ � SUð2Þ

to distinguish spectral different terms which have the same quantum number LS. The
properties of permutation group and Young tableau can be used in the reduction of
irreducible representation along the group chain because there is close connection
between permutation group P(n) and unitary group U(n). The theory of continuous
group and its application in atomic spectroscopy can be referred to the books of [1, 3].
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2.6 Point Group and Their Representation

The symmetry properties of the energy levels and the energy level splitting of the
ions (rare earth or transition-metal ions) in crystal are determined by symmetry of
the surrounding lattice ions. This is the point symmetry around the positions where
the active ions are located. These points remain fixed when any symmetry trans-
formation of the crystal is applied and so are the intersections of all the rotation axes
and all the reflection planes, because two successive rotations of the body about two
non-intersecting axes or two reflections in two planes without a common point
result in a translation of the body. Symmetry operations in fact can be divided into
three different fundamental kinds: rotation around an axis, reflection in a plane, and
translations in certain direction. The third operation has not relation to the problems
discussed in this book, and so we are not concerned with it. Before going to
enumerate all the point symmetry groups, it is necessary to discuss the common
features of the symmetry operations of rotations around an axis:

(1) If a group includes element Rg which takes the axis a to axis b, then the
symmetry elements rotating around the axis a and axis b through the same
angle are conjugated, that is

Rb ¼ RgRaR
�1
g ð2:12Þ

We can explain this formula in the following way: the operation RgRaRg
−1 takes the

axis b to axis a followed by rotating around the axis a through an angle u and then
rotating from axis a to axis b at last. The final result of this operation is a rotation
around axis b through an angle u. Therefore, the operations which rotate around
different axes through the same angle are conjugate elements belonging to the same
class of the group.

(2) If there is a 2-order axis perpendicular to the n-order axis Cn in a group, then Cn
k

and Cn
-k will belong to the same class. If the axis Cn lies on a plane rv, then

C�k
n ¼ rvCk

nðrvÞ�1, because the symmetry plane rv changed the direction of
rotation and so Cn

k and Cn
-k belong to the same class. However, if there is a plane

rh perpendicular to the Cn axis, which changes the rotation direction and at the
same time reverses the direction of the axis, then Cn

k and Cn
-k belong to different

classes.
(3) Many point groups are direct products of simple point group G (does not

include inversion i) and the group of symmetry center I containing only unit
element e and inversion i. One half of the direct product G ⊗ I is the original
group G and the other elements are the elements of G multiplied by inversion
element i. The inversion element i commutes with the elements of G, so the
direct product contains two times the elements of group G. Therefore, the
number of class of direct product group G ⊗ i is two times that of the group G;
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and each class C of the group G corresponds to two classes C and C ⊗ i. The
new irreducible representations produced have the same number and dimension
as those of the group G. This property makes it very simple to construct the
character table of direct product group.

There are two kinds of point groups: proper and improper rotations. The
so-called improper rotation means a rotation about some axis followed by a
reflection through a plane or followed by an inversion through the origin.

First kind of point group

(1) Cn Groups

Cyclic groups of n order. It is a group of rotations about an axis of n order. Each
one of its n elements forms a class itself and can be generated by any element in the
group. Group C1 contains only the identical transformation E and without any
symmetry. All the irreducible representations are of one-dimension. In a crystal
there are only five kinds of rotation groups: C1, C2, C3, C4, and C6.

(2) Dn Groups

These groups are produced by adding a 2-order axis perpendicular to n-order axis
Cn. By the action of Cn rotation, further n − 1 2-order axes are generated. Including
n horizontal 2-order axis intersecting at angles p/n, there are altogether 2n elements.
The number of classes is different for n is odd and n is even. If n is odd
(n = 2p + 1), all the 2-order axes can be transformed to each other by Cn, and so
they are in the same class. The rotations of clockwise Cn and those of
counter-clockwise Cn are conjugate, because of the existence of perpendicular
2-order axes. Therefore, besides the identity element E = Cn

n, 2p rotations form
p classes and so there are p + 2 classes. If n is even (n = 2p), all the 2-order axes
can not be arrived separately by Cn and so they are divided into two classes. The
other elements in this group form p + 1 classes, that is, the identity element E forms
one class and C2p is divided into p classes, because rotations of clockwise and those
of counter-clockwise are conjugate. In this case, there are p + 3 classes. For
example, there are three classes in D3 and five classes in D4. According to the
properties of the irreducible representation illustrated in Sect. 2.4, because
22 + 12 + 12 = 6, there are two one-dimensional irreducible representations and
one two-dimensional irreducible representation in group D3. For group D4, owing
to the fact that 22 + 12 + 12 + 12 + 12 = 8, there are four one-dimensional irre-
ducible representations and one two-dimensional irreducible representation. By
means of orthogonal relations, it is easy to obtain their characters tables.

(3) Tetrahedral Group T

This group is formed by all the symmetry axes of a tetrahedron, that is, three
2-order axes passing through two midpoints of opposite edges and four 3-order axes
passing through the vertices of the tetrahedron. Three 2-order axes are equivalent by
rotating the 3-order axes, and four 3-order axes are also equivalent by rotating the

2.6 Point Group and Their Representation 49



2-order axes. Therefore, there are 12 elements divided into four classes: E; three
2-order axes C2, four 3-order axes C3, four 3-order axes C2

3. Considering that
32 + 12 + 12 + 12 = 12, there are one three-dimensional irreducible representation
and three one-dimensional irreducible representations.

(4) Octahedron Group O

The symmetry axes of a octahedron contain three 4-order axes passing through the
centers of opposite faces, four 3-order axes which are body diagonal, and six
2-order axes passing through the midpoints of opposite edges. All the axes of the
same order are equivalent. There are 24 elements divided into following five
classes: E; 6 rotations C4 and C4

3; 3 rotations C4
2; 8 rotations C3 and C3

2; and 6
rotations C2. Because 32 + 32 + 22 + 12 + 12 = 24, there are two three-
dimensional irreducible representations, one two-dimensional irreducible repre-
sentation and two one-dimensional irreducible representations.

Second kind of point group

(1) Cnv Groups

The structure of groups Cnv is very similar to that of the groups Dn, so long as one
replaces the 2-order axes perpendicular to Cn to a vertical plane rv passing through
Cn. It is also a 2n order group containing n rotations about the axis of n order and
n vertical reflections plane rv. When n is odd (n = 2p + 1), it has p + 2 classes, but
has p + 3 classes when n is even (n = 2p). Therefore, the irreducible representation
number is the same as that of the group Dn and its character table is listed together
with that of group Dn.

(2) Cnh Groups

These groups are obtained by adding a perpendicular plane rh to Cn and have
2n elements: n rotations Cn

k and n rotation–reflections Cn
krh, with k = 1, 2, 3, …,

n. All the elements are commutative and so is a Abelian group. The number of class
is equal to the number of elements. If n is even, it includes symmetry inversion:
Cp
2prh ¼ C2rh ¼ i. The simplest group C1h 
 Cs contains only elements E and rh.

(3) S2n Groups

These are 2n order rotation–reflection cyclic groups. S2 
 Ci contains only identity

and inversion elements. If 2n = 4p + 2, owing to the fact that S4pþ 2
� �2pþ 1¼

C2rh ¼ Ci, it includes symmetry center. These kind of groups are S2 and S6, and
can be written as S4pþ 2 ¼ C2pþ 1�Ci. The number of classes is equal to the order of
the group and all their irreducible representations are of one-dimension.
Representation E of S4 is not a real two-dimensional representation but two
one-dimensional representations (C3 and C4) merged into one.
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(4) Dnh Groups

The 4n elements in these groups are obtained by adding to Dn a horizontal reflection
plane rh perpendicular to the n-order symmetry axis. A 2-order axis and the plane
rh passing through it will produce vertical plane rv perpendicular to the reflection
plane rh. Besides the original 2n elements of group Dn, there are n reflection planes
rv and n rotation–reflection elements Cn

krh. Owing to the fact that rh is commu-
tative with all the other group elements, group Dnh can be expressed as
Dnh ¼ Dn �Cs, where Cs is a group that contains only two elements E and rh. If
n is even, then Dnh includes symmetry center and D2ph ¼ D2p �Ci. The number of
classes for groups Dnh is twice the number in the group Dn, while half of its classes
are the same as those of Dn. The other classes can be obtained by multiplying these
by rh. When n is odd, then all the rv planes belong to one class. When n is even, the
rv planes belong to two classes. The rotation–reflections Cn

krh and Cn
−krh are

conjugated in pair. The number of irreducible representations is twice the number in
the group Dn, so the number of one-dimension and two-dimension representations
is also twice the number in the group Dn.

(5) Dnd Groups

The other way to add the reflection plane to Dn is to draw vertical planes through
the axis of the n-order axis and midway between each adjacent pair of horizontal
2-order axes. Another n − 1 similar planes are produced by the rotation of the n-
order axis. Therefore, these groups also contain 4n elements. Besides the original
2n elements of group Dn, there are n reflection planes rd, n rotation–reflection axes,
like S2kþ 1

2n ; k ¼ 1; 2; 3; . . .; n� 1. It can be shown that

rdS
2kþ 1
2n r�1

d ¼ rdrhC
2kþ 1
2n r�1

d ¼ rhrdC
2kþ 1
2n r�1

d ¼ rhC
� 2kþ 1ð Þ
2n ¼ S� 2kþ 1ð Þ

2n ;

It means that the rotation–reflection axes are conjugated in pairs. When n is even n
= 2p. The identity element E forms the first class and p times the rotation C2p around
n-order axis C2p

p = C2 forms the second class. The 2p second-order rotations around
horizontal axis, which are equivalent by the n-order axis rotation, constitute the third
class, and the 2p reflection planes rd constitute the fourth class. The rotation around
n-order axis (for k = 1, 2, 3,…, p – 1) in which C2p

k and C2p
-k are conjugated constitute

p-1 classes in pairs. Finally, the rotation–reflection axes S2n
2k+1 and S2n

-(2k+1) constitute
p classes in pairs. Therefore, when n is even n = 2p, there are 2p + 3 classes. When
n is odd, n = 2p + 1, there are horizontal 2-order axes perpendicular to the vertical
plane and so a symmetry center Ci is produced. Therefore, D2pþ 1;d ¼ D2pþ 1 � Ci

andD2p+1,d has 2p + 4 classes, becauseD2p+1 has p + 2 classes and the class number
of direct product of D2p+1 ⊗ Ci is twice the number in the group D2p+1. Their
irreducible representations can be deduced by those of the groups D2p+1.

(6) Group Oh

It is the cubic group introduced previously.
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(7) Group Td

This group is formed by all the symmetry elements of a tetrahedron. It can be
obtained by adding to the group T a reflection plane passing through one 2-order
and two 3-order axes. In this way, the 2-order axes become 4-order rotation–
reflection axes. All the 24 elements are divided into five classes: E, 8 rotations C3

and C3
2, 6 reflection planes, 6 rotation–reflection axes, and 3 rotations. It has the

same irreducible representations as that of the group O.

(8) Group Th

This group is obtained by adding to the group T a symmetry center i: Th ¼ T � Ci.
The appearance of i produces three reflection planes mutually perpendicular to each
other, because i = C2rh. On the other hand, by means of S6 ¼ C3 � Ci, 6-order
rotation–reflection axis is presented. Thus, 24 elements of this group are divided
into eight classes, which has the number double that of the group T, and so the
number of irreducible representations.

Noteworthily, owing to the restriction of the translations, axes of 5-order and
those higher than 6-order cannot exist and hence there are only 32 point groups in
the crystal. They are:

Cn;Cnhðn ¼ 1; 2; 3; 4; 6Þ 10 groups
Cnm;Dn;Dnhðn ¼ 2; 3; 4; 6Þ 12 groups
S2nðn ¼ 1; 2; 3Þ;Dndðn ¼ 2; 3Þ 5 groups
O;Oh; T; Th; Td 5 groups

Among these 32 point groups, there are 11 point groups, which include symmetry
center:

S2 
 Ci; S6;C2h;C4h;C6h;D3d ;D2h;D4h;D6h;Oh; Th

The irreducible representations of these 11 groups are divided into even repre-
sentations g and odd representations u.

2.7 Symmetry and Quantum Theory of the Ions in Solids

We will turn to the topic of the energy levels of the active ions in solids. Owing to
the fact that this problem is greatly dependent on the symmetry around the ions, we
should deal with it by associating the group theory with quantum mechanics.

Let us consider the relation between Schrödinger equation and the representation
of symmetry transformation groups. If the ion is in a symmetry position represented
by a group G = {Gi}, then under the action of an group element Gi, the wave
functions of the system, that is, the eigenfunctions of the Hamiltonian operator
should not have any change. Consider the Schrödinger equation
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Hw ¼ Ew ð2:13Þ

In order to express the transformation of the wave function, the following two
equations can be used

G�1
i wðxÞ ¼ w x0ð Þ ¼ w Gixð Þ ð2:14Þ

Giw x0ð Þ ¼ wðxÞ ¼ w G�1
i x0

� � ð2:15Þ

These two equations show that the transformation of the system by the operation Gi

is the same as to keep the system invariant but to transform the coordinate system
by Gi

−1. On the other hand, the linear algebra tells us that a real orthogonal
transformation, which keeps the distance of two points invariant, is a unitary
transformation (remember that the eigenfunctions of the Hamiltonian operator in
quantum mechanics are orthogonal and normalized). Transforming uðxÞ ¼
HðxÞwðxÞ by means of (2.14) and (2.15), the following can be obtained

G�1
i uðxÞ ¼ H Gixð Þw Gixð Þ ¼ H Gixð ÞG�1

i wðxÞ

Multiplying both sides of above equation from the left by Gi, one can obtain

uðxÞ ¼ GiH Gixð ÞG�1
i wðxÞðGiG

�1
i ¼ 1 has been usedÞ:

Comparing with the original formula uðxÞ ¼ HðxÞwðxÞ, the following result is
obvious

HðxÞ ¼ GiH Gixð ÞG�1
i :

Note that the Hamiltonian should be invariant because the system is invariant under
the transformation, that is, HðxÞ ¼ H Gixð Þ; therefore

HðxÞGi ¼ GiHðxÞ ð2:16Þ

Operating Gi on both sides of (2.13) and using (2.16), then

HðxÞGiwðxÞ ¼ GiHðxÞwðxÞ ¼ GiEwðxÞ ¼ E GiwðxÞð Þ ð2:17Þ

It shows that the wave functions belong to the same energy eigenvalue before and
after the transformation.

If the energy eigenvalue E has degeneracy g, that is, there are g wave functions
wj belonging to the same energy eigenvalue E, Giwj should be a linear combination
of g wave functions wj according to (2.17)
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Giwj ¼
Xg
l¼1

M Gið Þljwl ð2:18Þ

Operating with another group element, one can obtain a similar result

Gkwj ¼
Xg
l¼1

MðGkÞljwl

Each group element in {Gi} has a corresponding matrix M{Gi}, and for the joint
operation of product GiGk, one has

GiGkwj ¼
Xg
l¼1

MðGkÞljGiwl ¼
Xg
l;m¼1

MðGkÞljMðGiÞmlwm ¼
Xg
m¼1

MðGiGkÞmjwm

Formula MðGiGkÞmj ¼
Pg

l¼1 MðGiÞmlMðGkÞlj shows that the matrix for the group
element product is equal to the product of the matrices of group elements. The
existence of identity element and inverse element can also be demonstrated.
Therefore, these matrices form a representation of the group G, and the related wave
functions form the bases. It can be shown that the representation formed by the
degeneracy bases is irreducible and its dimension is equal to g. Certainly, the
accidental degeneracy and Kramers degeneracy should be excluded.

After establishing the relation between irreducible representation and the
degeneracy of energy levels, one can go back to the problem of free ions.
Obviously, the free ions possess spherical symmetry: the symmetry group is
three-dimensional rotation group R3 (SO(3)). The representation of the R3 group, as
will be discussed in the following, can be reduced to a series of irreducible rep-
resentations labeled by angular momentum quantum numbers J:

DJ1 ;DJ2 ; . . .;DJi ; . . .

The dimension of DJi is 2Ji+ 1, the degeneracy of the spectral term with angular
momentum J. The eigen wave functions of free ions (the wave functions of the
spectral terms) constitute the bases of the irreducible representations.

The active ions in crystals have interactions with the surrounding ions and a
lower symmetry perturbation potential should be added to the Hamiltonian with
spherical symmetry. Then, the crystal field potential has symmetry group G which
is a subgroup of R3. The representations originally irreducible in R3 are now
reducible and they can be split into two or more irreducible representations. For
example,
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DJi ¼ Cð1Þ g1ð ÞþCð2Þ g2ð Þ ð2:19Þ

then, it is said that the spectral term Ji is split into two levels with degeneracy g1 and
g2.

Having this general understanding, the next step is to realize a detailed method
for the calculation of energy level splitting. In order to achieve this goal, one should
have more knowledge of group theory and the theory of angular momentum as well
as the application of the group theory to the calculation of matrix elements.

2.8 Full Rotation Group and Angular Momentum Theory

Full rotation group, that is, spherical symmetry group, is the symmetry group of free
ions. It can be seen from previous analysis that the free ion’s wave functions
constitute the bases of the irreducible representations of this group. On the other
hand, these functions are also eigenfunctions of angular momentum. The essence of
this relation is that the angular momentum operator is in fact a rotation operator.
This can be clearly seen from the following analysis.

Consider the transformation of a wave function wðx; y; zÞ after rotation around
z axis

w x0; y0; z0ð Þ ¼ Rwðx; y; zÞ

If one rotates around z axis through an angle a, then according to the familiar
formula

x0 ¼ x cos aþ y sin a

y0 ¼ �x sin aþ y cos a

z0 ¼ z

Substituting a = du into this equation, then

x0 ¼ xþ ydu

y0 ¼ �xduþ y

z0 ¼ z

Because du is a very small angle, the following relations can be used:

cosðduÞ ¼ 1; sinðduÞ ¼ du:

Therefore
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w x0; y0; z0ð Þ ¼ wðxþ ydu; y� xdu; zÞ

Expanding this formula into Taylor series

w x0; y0; z0ð Þ ¼ w x; y; zð Þþ du y
@

@x
� x

@

@y

� �
w x; y; zð Þ

and using the angular momentum operator in quantum mechanics

Jz ¼ �i�h x
@

@y
� y

@

@x

� �
¼ �i�h

@

@u

We have

Rðd/Þwðx; y; zÞ ¼ 1� id/Jz=�hð Þwðx; y; zÞ ¼ exp �id/Jz=�hð Þwðx; y; zÞ

Rotating z axis through a finite angle u, then

Rð/Þwðx; y; zÞ ¼ exp �i/Jz=�hð Þwðx; y; zÞ

The electronic eigenfuctions of free ion constitute the bases of the irreducible
representations of group R3. It can be seen from Chap. 1 that they are spherical
harmonic functions

Yjm h;uð Þ 
 jmj i

We also have

Jz jmj i ¼ m�h jmj i ð2:20Þ

Therefore, the 2j + 1 functions with m = −j, −j + 1, −j + 2, …, j − 2, j − 1, j under
the symmetry operation of rotation through an angle u around z axis is a diagonal
matrix with diagonal matrix elements

eiju; ei j�1ð Þu; ei j�2ð Þu; . . .; e�i j�2ð Þu; e�i j�1ð Þu; e�iju

Obviously, the character of the operation matrix (irreducible representations of
group R3) is

v uð Þ ¼
Xm¼j

m¼�j

eimu ¼ sin jþ 1=2ð Þu
sin u=2ð Þ ð2:21Þ

When u = 0 or 2p, it should be calculated by the ratio of differential quotient and
the result is vð0Þ ¼ 2jþ 1; vð2pÞ ¼ 2jþ 1 for j is an integer and vð2pÞ ¼ �ð2jþ 1Þ
for j is a half-integer.
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Equation (2.21) will be used frequently to solve the problem of energy level
splitting by crystal field. It should be noted that when j is a half-integer, so j + 1/2 is
an integer, then by (2.21)

v uþ 2pð Þ ¼ sin jþ 1=2ð Þu
sin u=2ð Þ ¼ sin jþ 1=2ð Þu

sin u=2þ pð Þ ¼ � sin jþ 1=2ð Þu
sin u=2ð Þ ¼ �v uð Þ ð2:22Þ

Therefore, for the half-integer j we have a double-valued character. In order to cope
with this situation, a new group element E will be introduced, which represents a
rotation of 2p and now the identity element E is the rotation of 4p.

The augmented group contains twice as many elements as the original one and is
call the double group. Besides the original elements G1, G2, …, Gn, there are new
elements G1, G2; . . .; Gn in the double group, which have the relation of Gi ¼ EGi.
The irreducible representation of the double group can be divided into two parts,
one is called single-valued representation, in which Gi and Gi have the same
representation, and the other one is called double-valued representation, in which
v Gi
� � ¼ �v Gið Þ.

It should be noted that by using (2.21) and (2.22) to reduce the irreducible repre-
sentation from higher symmetry to lower symmetry, the angle u for symmetry center
and reflection mirror is taken to be p. For rotation–reflection axis S3, u = p/3, and
for rotation–reflection axis S4 and S6, u should be p/2 and p/3, respectively.

Now let us consider the coupling between two angular momenta, which can be
different momenta of the same electron (e.g. one spin momentum and one orbital
momentum) or the same kind of momentum for different electrons. In quantum
mechanics, the zero-order wave function of an interaction system is the product of
the wave functions of its subsystems. By using the language of group representa-
tion, the basis space describing the interaction system is the direct product of the
basis spaces describing the subsystems. The direct product space is generally
reducible, that is, it can be reduced to the sum of a series of subspaces. By a linear
transformation, one can express the direct product space as the direct sum of a series
of subspace orthogonal to each other. If the wave functions of two angular momenta
are j1m1j i and j2m2j i, respectively, their direct product space can be transformed to
irreducible space of the basis j1j2jmj i by the following linear transformation

j1j2jmj i ¼
X
m1m2

j1m1j2m2j i j1m1j2m2h jj1j2jmi ð1:23Þ

The coefficients j1m1j2m2h jj1j2jmi are called vector-coupling coefficients. In order
to write it in a more symmetric form, Wigner introduced the so-called 3-j symbols
defined as

j1 j2 j3
m1 m2 m3

� �
¼ �1ð Þj1�j2�m3 2j3 þ 1ð Þ�1=2 j1m1j2m2 j j1j2j3 � m3h i ð2:24Þ
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They have the following symmetric properties:
The even permutation of the columns is symmetry

j1 j2 j3
m1 m2 m3

� �
¼ j2 j3 j1

m2 m3 m1

� �
¼ j3 j1 j2

m3 m1 m2

� �
ð2:25Þ

The odd permutation of the columns involves a multiplying factor of �1ð Þj1 þ j2 þ j3

j3 j2 j1
m3 m2 m1

� �
¼ j2 j1 j3

m2 m1 m3

� �
¼ j1 j3 j2

m1 m3 m2

� �

¼ �1ð Þj1 þ j2 þ j3 j1 j2 j3
m1 m2 m3

� �
ð2:26Þ

and

j1 j2 j3
m1 m2 m3

� �
¼ �1ð Þj1 þ j2 þ j3 j1 j2 j3

�m1 �m2 �m3

� �
ð2:27Þ

The 3-j symbols also have the following orthogonal properties:

X
j3;m3

2j3 þ 1ð Þ j1 j2 j3
m1 m2 m3

� �
j1 j2 j3
m0

1 m0
2 m3

� �
¼ d m1m

0
1

� �
d m2m

0
2

� � ð2:28Þ

X
m1m2

j1 j2 j3
m1 m2 m3

� �
j1 j2 j03
m1 m2 m0

3

� �
¼ 2j3 þ 1ð Þ�1d j3j

0
3

� �
d m3m

0
3

� � ð2:29Þ

Introducing by (2.29), it can be shown

X
m1m2m3

j1 j2 j3
m1 m2 m3

� �2

¼ 1

The values of 3-j symbols can be calculated by formula (e.g. Equations (2.1–
2.20) provided by Judd in reference [3]), and they can also be found from tables
(e.g. Rotenberg et al. “The 3-j and 6-j symbols” [4]) or calculated by means of
computer programs [5]. Two useful simple formulas are

j j 1
m �m 0

� �
¼ �1ð Þj�m m

2jþ 1ð Þ jþ 1ð Þj½ 	1=2
ð2:30Þ

j1 j2 j3
0 0 0

� �
¼ �1ð ÞJ=2 J � 2j1ð Þ! J � 2j2ð Þ! J � 2j3ð Þ!

Jþ 1ð Þ!
� 1=2 J

2

� �
!

J
2 � j1
� �

! J
2 � j2
� �

! J
2 � j3
� �

!

ð2:31Þ
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When 2j + 1 is even, (2.30) is not valid. In (2.31) J = j1 + j2 + j3, when J is odd,
this 3-j symbol is equal to zero. It is the result obtained by (2.27). Some more
formulas for the calculation of 3-j symbols in special cases can be found from the
book of Rotenberg et al. [4] or directly calculated by a computer program [5]. There
is an important property of the 3-j symbols that should be mentioned, that is, the
triangle condition of 3-j symbols. It means that 3-j symbols will be zero unless three
j are satisfied by the triangle condition j1 þ j2 � j3 � j1 � j2j j. On the other hand, the
3-j symbols vanish unless m1 + m2 + m3 = 0.

We should also mention briefly some of the properties of 6-j and 9-j symbols,
which are used in the wave functions calculations for the coupling of three and four
angular momenta. For the coupling of three angular momenta, the ways for j1, j2, j3
coupling in pair can be different. For example, it can be (j1j2)j12j3J or j1(j2j3)j23J,
that is, j1j2 couple at first and then couple with j3, or j2j3 couple at first and then
couple with j1. The wave functions of reducible space obtained by different cou-
pling ways can be transformed by

j1j2ð Þj12j3JMj i ¼
X
j23

j1j2ð Þj12j3J j j1 j2j3ð Þj23Jh i j1 j2j3ð Þj23JMj i ð2:32Þ

and the 6-j symbols are defined as

j1 j2 j12
j3 J j23

� �
¼ �1ð Þj1 þ j2 þ j3 þ J 2j12 þ 1ð Þ 2j23 þ 1ð Þ½ 	�1=2 j1j2ð Þj12j3J j j1 j2j3ð Þj23Jh i

ð2:33Þ

The values of 6-j symbols can also be found from tables [4]. However, in these
tables, only the values of some 6-j symbols are listed. Values of other 6-j symbols
can be found by their symmetry properties. Each 6-j symbol can be seen as a regular
tetrahedron with 6j vectors as its six edges and so it has the symmetry of a regular
tetrahedron. Its symmetry properties can be expressed as: the 6-j symbol is invariant
under any permutation of the columns and is also invariant under an interchange of
the upper and lower arguments in any two columns or exchange of any two
columns:

j1 j2 j3
j4 j5 j6

� �
¼ j4 j5 j3

j1 j2 j6

� �
¼ j2 j1 j3

j5 j4 j6

� �
ð2:34Þ

The aforementioned four planes of the regular tetrahedron are triangles and the
value of 6-j symbol will be zero unless the following triangle conditions are
satisfied
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D j1j2j3ð Þ;D j1j5j6ð Þ;D j4j5j3ð ÞD j2j4j6ð Þ

That means, for example,

j1 þ j2 � j3 � j1 � j2j j

In addition, the 6-j symbols have the following orthogonal relation:

X
j6

2j3 þ 1ð Þ 2j6 þ 1ð Þ j1 j2 j3
j4 j5 j6

� �
j1 j2 j03
j4 j5 j6

� �
¼ d j3j

0
3

� � ð2:35Þ

One can find the values of 6-j symbols and many useful calculation formulas in the
book written by Rotenberg et al. [4].

The 9-j symbols are used to correlate different coupling ways for four angular
momenta. For example, in the relation between j1j2ð Þj12 j3j4ð Þj34Jj i and
j1j3ð Þj13 j2j4ð Þj24Jj i, the following coefficients can be used in the transformation

j1j2ð Þj12 j3j4ð Þj34JMj i ¼
X
j13j24

j1j2ð Þj12 j3j4ð Þj34J j j1j3ð Þj13 j2j4ð Þj24Jh i j1j3ð Þj13 j2j4ð Þj24JMj i

ð2:36Þ

The above coefficients can be expressed as 9-j symbols by

j1j2ð Þj12 j3j4ð Þj34J j j1j3ð Þj13 j2j4ð Þj24Jh i

¼ 2j12 þ 1ð Þ 2j34 þ 1ð Þ 2j13 þ 1ð Þ 2j24 þ 1ð Þ½ 	1=2
j1 j2 j12
j3 j4 j34
j13 j24 J

8><
>:

9>=
>;

ð2:37Þ

We will not use 9-j symbols directly in this book and so would like to mention
only two formulas, which are useful in the calculation of matrix elements

j11 j12 j13
j21 j22 j23
j31 j32 j33

8><
>:

9>=
>; ¼

X
all m

j11 j12 j13
m11 m12 m13

� �
j21 j22 j23
m21 m22 m23

� �
j31 j32 j33
m31 m32 m33

� �

� j11 j21 j31
m11 m21 m31

� �
j12 j22 j32
m12 m22 m32

� �
j13 j23 j33
m13 m23 m33

� �

ð2:38Þ

j1 j2 j
j3 j4 j
j0 j0 0

8<
:

9=
; ¼ �1ð Þj2 þ j3 þ jþ j0 2jþ 1ð Þ 2j0 þ 1ð Þ½ 	�1=2 j1 j2 j

j4 j3 j0

� �
ð2:39Þ
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2.9 Irreducible Tensor Operators and the Calculation
of Matrix Elements

The calculation of matrix elements and energy levels are the most basis calculations
in the theory of crystal spectroscopy. It is an important problem to use group theory
and the theory of angular momentum in these calculations. This problem will be
discussed in this section.

The transformation characteristics of the angular momentum eigenfunctions
under rotation groups have been investigated in the last section. The wave function
spaces of the interacting systems have also been correlated with the representation
spaces of the direct product of the rotation group. Obviously, if the operators are
classified according to the transformation properties of the angular momentum
eigenfunctions, that is to say, let the operators constitute the bases of the irreducible
representation space of the rotational group; undoubtedly, we can make full use of
the symmetry properties of the system and a series of formulas developed by group
theory to simplify the computation of various matrix elements in spectroscopy,
which is the reason for the introduction of irreducible tensor operators. By means of
these transformation properties, one can define irreducible tensor operators: irre-
ducible tensor operators are operators forming the bases of the irreducible repre-
sentation of the rotation group. They satisfy the following relation in mathematics

R a; b; cð ÞT kð Þ
q R�1 a; b; cð Þ ¼

X
q0

T kð Þ
q0 R

kð Þ
q0q a; b; cð Þ ð2:40Þ

Practically, (2.40) is the same as the transformation of angular momentum eigen-
functions under rotation expressed as follows

R a; b; cð Þ kqj i ¼
X
q0

kq0j iR kð Þ
q0q a; b; cð Þ

To view it at a different angle, irreducible tensor operators T kð Þ
q have the same

transformation properties under operation of rotation group as those of angular
momentum eigenfunctions kqj i. Therefore, under the action of angular momentum
—rotation operator, T kð Þ

q and kqj i should have the same transformation, that is

Jz k; qj i ¼ q k; qj i

J� k; qj i ¼ k kþ 1ð Þ � q q� 1ð Þ½ 	1=2 k; qj i ð2:41aÞ

Jz; T
kð Þ

q

h i
¼ qT kð Þ

q
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J�; T kð Þ
q

h i
¼ k kþ 1ð Þ � q q� 1ð Þ½ 	1=2T kð Þ

q�1 ð2:41bÞ

Equations (2.40) and (2.41a, 2.41b) can be seen as the mathematical definition of
irreducible tensor operator, in which Jz is the z component of angular momentum
and J± are the shift operators which raise and lower the component q of angular
momentum k, respectively.

Having introduced the irreducible tensor operators, the calculation of matrix
elements becomes very easy, because the transformation property of the product of
operators and the wave functions can be easily obtained. In order to calculate matrix
elements, it is necessary to know Wigner-Eckart theorem first.

The physics idea for the introduction of this theorem has been mentioned above.
If one would like to calculate matrix elements a0j0m0h jT kð Þ

q ajmj i, the first step is to

investigate the transformation property of T kð Þ
q ajmj i. According to the result dis-

cussed previously, it is transformed as the vectors in the direct product space
RðkÞ � RðjÞ, or one can say that T kð Þ

q ajmj i with all the different k and j are the bases

of the direct product space RðkÞ � RðjÞ. Reducing the reducible space, the basis can
be written as bJMj i. By means of the angular momentum coupling method dis-
cussed previously, these vectors can be written as a linear combination of the bases
in the direct product space RðkÞ � RðjÞ (remember that the transformation property of
the operators and the bases of wave function space is the same)

bJMj i ¼
X
qm

kqjm j kjJMh iT kð Þ
q ajmj i ð2:42Þ

One can make an inverse transformation by using the orthogonal property of the
coefficients

T kð Þ
q ajmj i ¼

X
JM

kqjm j kjJMh i bJMj i

Multiplying both sides of this equation by a0j0m0h j, then

a0j0m0 T kð Þ
q

			 			ajmD E
¼

X
JM

kqjm j kjJMh i a0j0m0 j bJMh i

By using orthogonal property of angular momentum eigenfunctions, it can be
shown that a0j0m0jbJMh i is zero except J = j′, M = m′ and its values is independent
of m′. It is denoted as a0j0 T kð Þ�� ��aj� �

and called irreducible matrix element, that is

a0j0m0 j bJMh i ¼ a0j0 T kð Þ�� ��ajD E
dJj0dMm0
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then

a0j0m0 T kð Þ
q

			 			ajmD E
¼ kqjm j kjj0m0h i a0j0 T kð Þ�� ��ajD E

This is so-called Wigner-Eckart theorem (W-E theorem). Writing the coefficients
in the form of 3-j symbols, then

a0j0m0 T kð Þ
q

			 			ajmD E
¼ �1ð Þj0�m0 j0 k j

�m0 q m

� �
a0j0 T kð Þ�� ��ajD E

ð2:43aÞ

According to the definition (2.24) of 3-j symbol, the expression (2.43a) should
be

a0j0m0 T kð Þ
q

			 			ajmD E
¼ �1ð Þk�jþm0

2j0 þ 1ð Þ1=2 j0 k j
�m0 q m

� �
a0j0 T kð Þ�� ��ajD E

ð2:43bÞ

However, many authors adopt (2.43a) as the expression of W-E theorem. The
reduced matrix elements of the two different formulas are different. On the other
hand, the W-E theorem for point group can be expressed as

C1c1h jO Cð Þ
c C2c2j i ¼ Cð Þ�1=2 C1c1h jC2c2Cci C1h j O Cð Þ		 		 C2j i ð2:43cÞ

where C1c1h C2c2Ccj i is Clebsch-Gordan coefficients (C-G coefficients) of point
group, C and c denote irreducible representation of point group and the component
of that irreducible representation, respectively, and (C) is the dimension of irre-
ducible representation C. C-G coefficients of triangle basis can be found in
Appendix F.

Using this theorem, we can save a lot of time in the calculation of matrix
elements, because with only one of the reduced matrix element a0j0 T kð Þ�� ���

aji, all
the (2j + 1)(2k + 1)(2j′ + 1) matrix elements can be calculated. Furthermore, by the
properties of the 3-j symbols, some of the matrix elements are equal to zero and
without calculation. We will use it frequently in the calculation of the energy level
and transition probability.

As an example, we would like to prove a useful formula for the calculation of
energy level and transition probability. Many spectroscopic problems involved
orbital and spin variables. If these two kinds of angular momentum are denoted by
j1 and j2, respectively, by using (2.21), a general coupling state (basis JMh j of direct
product space) can be expressed as a linear combination of the direct products of
two subspace bases j1m1h j and j2m2h j as follows
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j1j2JMh j ¼
X
m1m2

j1m1j2m2h j j1 j2 J
m1 m2 �M

� �
2Jþ 1ð Þ1=2 �1ð Þj1�j2 þM

Similarly, a tensor operator T Kð Þ
Q 1; 2ð Þ of a direct product space ℜ(KQ) can be

expressed as the following linear combination of tensor operators T k1ð Þ
q1 1ð Þ and

T k2ð Þ
q2 2ð Þ of subspaces ℜ(k1q1) and ℜ(k2q2)

T Kð Þ
Q 1; 2ð Þ ¼

X
q1q2

T k1ð Þ
q1 1ð ÞT k2ð Þ

q2 2ð Þ k1 k2 K
q1 q2 �Q

� �
2Kþ 1ð Þ1=2 �1ð Þk1�k2 þQ

ð2:44aÞ

The formula for a point group can be expressed as follows

T Cð Þ
c ¼ T C1ð Þ

c1
� T C2ð Þ

c2

h i
¼

X
c1c2

T C1ð Þ
c1

T C2ð Þ
c2

C1C2c1c2h jCci ð2:44bÞ

Equation (2.44b) is practically a general formula for the direct product of two
irreducible tensors. If a point group irreducible representation C replaced by an
angular momentum quantum number K, a component c of C replaced by Q and the
C-G coefficients of the point group replaced by 3-j symbol then formula (2.44a) can
be obtained.
The reduced matrix element expression of (2.44a) can be obtained as follows:

The left side of (2.44a) can be expressed as

j1j2JMh jT Kð Þ
Q 1; 2ð Þ j01j02J 0M0		 � ¼ �1ð ÞJ�M J K J 0

�M Q M0

� �
j1j2J T Kð Þ 1; 2ð Þ�� ��j01j02J 0

D E

ð2:44cÞ

By using the detailed expansion of the wave functions j1j2JMh j and j01j
0
2J

0M0		 �
, the

summation of the right side of (2.44a) can be expressed as

X
m1m2

X
m0

1m
0
2

X
q1q2

�1ð Þk1�k2 þQþ 2j1 þMþ j01�j02 þM0�m1�m2
j1 j2 J

m1 m2 �M

� �
j01 j02 J 0

m0
1 m0

2 �M0

� �
k1 k2 K

q1 q2 �Q

� �

� j1 k1 j01
�m1 q1 m0

1

� �
j2 k2 j02

�m2 q2 m0
2

� �
2Jþ 1ð Þ 2J 0 þ 1ð Þ 2Kþ 1ð Þ½ 	1=2 j1 T k1ð Þ 1ð Þ�� ��j01

D E
j2 T k2ð Þ 2ð Þk kj02
� �

ð2:44dÞ

Multiply the right side of (2.44a) and (2.44d) by �1ð ÞJ�M J K J 0

�M Q M0

� �
and

sum over
P

MM0Q
. Take the orthogonal property of the 3-j symbol into account and

change the order of the column and row in the 3-j symbol. Eliminate the phase
factors by means of Eqs. (2.26), (2.28), and (2.38), and then comparing both sides
of the obtained equation, it can be shown that
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j1j2J T Kð Þ 1; 2ð Þ�� ��j01j02J 0
D E

¼ 2Jþ 1ð Þ 2J 0 þ 1ð Þ 2K þ 1ð Þ½ 	1=2
j1 j01 k1
j2 j02 k2
J J 0 K

8><
>:

9>=
>; j1 T k1ð Þ 1ð Þ�� ��j01
D E

j2 T k2ð Þ 2ð Þ�� ��j02
D E

ð2:45Þ

Relation (2.45) is a very useful formula in spectroscopy.
If the discussion only concerns the matrix elements of “the first part” operator

T k1ð Þ 1ð Þ of the state j1j2Jj i, this formula can be further simplified. Let T k2ð Þ 2ð Þ ¼ I,
that is, unit operator, then k2 = 0, j2 = j′2, and K = k1, using (2.39) and noting that
in this case one has

j2 T k2ð Þ 2ð Þ�� ��j02
D E

¼ 2j2 þ 1ð Þ1=2dj2j02

the following expression can be obtained

j1j2J T k1ð Þ 1ð Þ�� ��j01j02J
0

D E
¼ �1ð Þj1 þ j2 þ J 0 þ k1 2J þ 1ð Þ 2J 0 þ 1ð Þ½ 	1=2 J

j01
J 0

j1
k1
j2

� �
j1 T k1ð Þ 1ð Þ�� ��j01

D E
dj2j02

ð2:46Þ

If we are concerned about the matrix elements of “the second part” operator
T k2ð Þ 2ð Þ, then let T k1ð Þ 1ð Þ ¼ I, and k1 = 0, j1 = j′1, K = k2. By using (2.39) once
again, the following expression can be obtained similarly

j1j2J T k2ð Þ 2ð Þ�� ��j01j02J 0
D E

¼ �1ð Þj1 þ j02 þ Jþ k2 2J þ 1ð Þ 2J 0 þ 1ð Þ½ 	1=2 J
j02

J 0

j2
k2
j1

� �
j2 T k2ð Þ 2ð Þ�� ��j02

D E
dj1j01

ð2:47Þ

Although (2.45) can be used to calculate the matrix elements of a two-electron
system, the previous discussion is about the matrix elements of single electron.
Most of the problems in spectroscopy are concerned with multi-electron, and so the
calculation of multi-electron matrix elements should be introduced. It should be
pointed out that to construct the wave functions of a multi-electron system and
calculate their matrix elements, the coefficients of fractional parentage should be
introduced. We would not go so far in mathematics but only make use of the unit
operator of multi-electron, which has appropriate direct reading tables.
Two operators A kð Þ

q and O kð Þ
q with the same transformation property obviously have

the relation

a0j0m0 T kð Þ
q

			 			ajmD E
¼ �1ð Þj0�m0 j0

�m0
k
q

j
m

� �
a0j0 T kð Þ�� ��ajD E
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T kð Þ
q can be A kð Þ

q or O kð Þ
q . In this way

a0j0m0 A kð Þ
q

			 			ajmD E
¼ a0j0m0 O kð Þ

q

			 			ajmD E
� a0j0 A kð Þ�� ��aj� �

a0j0 O kð Þk kajh i ð2:48Þ

In case O kð Þ
q is a unit operator, (2.48) shows that any operator can be expressed as a

unit operator multiplied by a certain value. The unit operator for a single electron is
denoted by u kð Þ

q ið Þ, then its reduced matrix element will be

a0j0 u kð Þ�� ��D
aji ¼ daa0djj0

and for multi-electron system U kð Þ
q ¼ P

i u
kð Þ
q ið Þ, the summation being over all the

electrons. The related 6-j symbols and the coefficients of fractional parentage are
used to determine their irreducible matrix elements. Nielson and Koster [6] have
given the tables for the irreducible matrix elements of the unit operator for the
configurations of pn; dn; f n. We show now an example of the irreducible matrix
elements of unit operators.

The crystal field potential energy of rare earth ions in crystal can be expressed as

V ¼
X
k;q

BkqC
kð Þ
q ð2:49Þ

where multi-electron operators C kð Þ
q ¼ P

i C
kð Þ
q hi;uið Þ are related to the spherical

harmonics functions byC kð Þ
q hi;uið Þ ¼ 4p

2kþ 1


 �1=2
Y kð Þ
q hi;uið Þ andBkq are the so-called

crystal field parameters. By means of a relation like (2.48), it is obvious that

f nSLJM Vj jf nS0L0J 0M0h i ¼
X
kq

Bkq f nSLJM U kð Þ
q

			 			f nS0L0J 0M0
D E

f C kð Þ�� ��fD E
ð2:50Þ

According to the formulas given above, one has

f nSLJM U kð Þ
q

			 			f nS0L0J 0M0
D E

¼ �1ð ÞJ�M J k J 0

�M q M0

� �
f nSLJ U kð Þ�� ��f nS0L0J 0D E

ð2:51Þ

f nSLJ U kð Þ�� ��f nS0L0J 0� �
can be obtained by using (2.46). Remember that the crystal

field potential is an orbital operator
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f nSLJ U kð Þ�� ��f nS0L0J 0D E
¼ �1ð ÞSþL0 þ Jþ k 2Jþ 1ð Þ 2J 0 þ 1ð Þ½ 	1=2 J J 0 k

L0 L S

� �
f nSL U kð Þ�� ��f nSL0D E

dSS0

ð2:52Þ

where f nSLJ U kð Þ�� ��f nSL0J 0� �
can be found in the tables published by Kamiskii [7],

which involves the data of all high-lying 2S+1LJ states (part of these data can be
found in Appendix D of this book). On the other hand, we have

l1h j C kð Þ		 		 l2j i ¼ �1ð Þl1� 2l1 þ 1ð Þ 2l2 þ 1ð Þ½ 	1=2 l1 k l2
0 0 0

� �
ð2:53Þ

For f electron it is

3 C kð Þ�� ��3D E
¼ �1ð Þ3�7� 3 k 3

0 0 0

� �

The 3-j symbols in (2.53) are easy to be calculated by (2.31).
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Chapter 3
Rare Earth Ions in Materials

3.1 Crystal Field on the Active Ions

The crystal field potential matrix element has been briefly mentioned in the last
chapter. We should study it in much more detail, because it is a central problem in
the energy level calculation of solid-state laser materials.

First, it is necessary to have a general idea about the physical mechanisms of
crystal field. In free ions, there are electron–nucleus Coulomb interaction, electron–
electron Coulomb interaction, orbital–spin interaction, and electron–electromag-
netic field interaction. Besides, the electrons in the active ions in a medium have
complex interactions with the lattice ions in the environment that can be described
by crystal fields. It includes at least the following interaction mechanisms [1, 2]:
(1) Overlap and exchange interaction of electric charge distribution; (2) Covalence
interaction; (3) Point charge Coulomb interaction; (4) Dispersing charge Coulomb
interaction; (5) Dipole polarization interaction; (6) Quadrupolar polarization inter-
action; (7) Charge penetration interaction. In the case of rare earth ions, some
authors claim that the first two interactions make dominant contribution to the
crystal field [2]. Nevertheless, if the molecular dynamics simulation (MDS) method
is used to determine the actual position of ligands, the calculation results of energy
levels and electric-dipole transition intensities are satisfactory even only the point
charge contribution is taken into account [3].
Thus the Hamiltonian for the electrons of active ions in crystals can be written as

H ¼ Hen þHee þHso þHc þHext ð3:1Þ

where Hen is the electron–nucleus interaction Hamiltonian, Hso denotes the spin–
orbit interaction, Hc represents the crystal field interaction Hamiltonian, and Hext is
the interaction Hamiltonian with external field. The last interaction will not be
discussed in this book and the first three interactions have been dealt with in
Chap. 1. The main objective of this chapter is to discuss the crystal field interaction
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represented by Hc. The property of the system, especially the energy level structure,
depends on the magnitude of the perturbation Hc. If Hc is smaller than Hen + Hee as
well as Hso, then the energy levels are similar to those of the free ions. Thus we can
use eigenfunctions of the free ions as zero-order wave functions to find the crystal
field energy level splitting of the state 2S+1LJ. If the magnitude of Hc is the same as
or even larger than that of Hso, then one should consider the interaction of Hc before
that of the Hso. The characteristics of the energy level are reflected by the symmetry
of the crystal field and its point group irreducible representation. We now show the
orders of magnitude of various interactions for transition metal ions and rare earth
ions (in unit of wave number cm−1).

Hen Hee Hso Hc

Iron group 105 104 102 104

Rare earth 105 104 103 102

In order to solve the problem of the energy level splitting for the active ions in
the materials, besides to treat crystal field interaction as a perturbation, the fol-
lowing two approximations should be assumed:

(1) The interactions between the electrons of neighbor active ions can be neglected;
(2) The interactions between the electrons of the same active ions can be neglected.

The first approximation is correct for the active ions in the insulated laser materials.
Solid laser materials (excluding semiconductors) doped with a small amount of rare
earth or transition ions as the luminescent centers are in this category. The second
approximation, that is, single-electron approximation, has been proved to provide
good enough calculation results for energy levels. Certainly, there are a series of
published papers on the correlative crystal field [4–6]. The readers interested in the
effects of the correlative crystal field can refer to those papers.
Indeed, the effects of lattice vibration on the energy levels cannot be neglected.
However, we will discuss the effect of the crystal field in a static lattice first and
then deal with the effects of lattice vibration.

On the other hand, for a general purpose, we will not calculate the crystal field
splitting of different mechanisms separately, but use a phenomenological parameter
method to summarize all the splitting effects caused by different mechanisms.
Equation (2.48) is a general expression and valid not only for rare earth ions but
also for transition-metal ions, because spherical harmonic functions C kð Þ

q are
orthogonal basis functions in a completed space and any function can be expanded
by these functions. The expanded coefficients Bkq are the so-called crystal field
parameters in general crystal field theory. By using electrostatic model, one can
obtain an expression of parameter Bkq. Classically, it is supposed that the charge
distribution among lattice ions in the environment will not overlap with that of the
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electrons in the active ions and so can comply with Laplace equation. Thus the
crystal field potential can be written as

Hc ¼ �
X
i

Z
ds

eq Rð Þ
R� rij j

where the summation is over the electrons at different position ri, and q(R) is the
external charge distribution density. The related potential should be integrated over
all the crystal. On the other hand, R� rij j�1 can be expanded as

R� rij j�1¼
X1
k¼0

rkh
rkþ 1
i

Pk cosxið Þ

where xi is the angle between the radius vector of external charge described by
spherical coordinates R, H, U and the radius vector of the electron described by
spherical coordinates ri, hi, /i in the active ion. r< and r> is the shorter and longer
between R and ri, respectively. On the other hand,

Pk cosxið Þ ¼
Xk
q¼�k

�1ð Þq 4p
2kþ 1

Yk;�q H;Uð ÞYkq hi;uið Þk

¼
Xk
q¼�k

�1ð ÞqC kð Þ
�q H;Uð ÞC kð Þ

q hi;uið Þ

If Hc is written as

Hc ¼
X
kq

Bkq

X
i

C kð Þ
q hi;/ið Þ ð3:2Þ

then

Bk
q ¼ �e

Z
�1ð Þqq Rð ÞCk

�q H;Uð Þ
rkh

rkþ 1
i

ds ð3:3Þ

Neglecting the electron overlapping effect as well as the exchanging and covalent
ones between electrons in adjacent ions, one always has Rj ji rij j; then

Bkq ¼ �e
Z

�1ð Þqq Rð ÞC kð Þ
�q H;Uð Þ rki

Rkþ 1 ds ¼ �e
Z

ds
�1ð Þqq Rð ÞC kð Þ

�q H;Uð Þ
Rkþ 1

" #
rki

ð3:4Þ

3.1 Crystal Field on the Active Ions 71



In the calculation of energy level splitting caused by the crystal field, the crystal
field Hamiltonian has been integrated over electronic wave functions so that the
crystal field parameter can be expressed as

Bkq ¼ �e
Z

ds
�1ð Þqq Rð ÞC kð Þ

�q H;Uð Þ
Rkþ 1 rk

� � ð3:5Þ

where

rk
� � ¼ Z

1

0

drR2
4f rð Þr2 ð3:6Þ

In (3.6), R4f is electronic radial wave function. It should be noted that both (3.2) and
(2.49) are universally valid, but the detailed expression of Bkq, that is, (3.5) is only
valid under a special assumption of electrostatic model.
There is a factor l C kð Þ�� ���

li in the matrix elements of crystal field potential.
Therefore, according to (2.49) and the triangle condition of 3-j symbol or the
triangle rule of the angular momentum coupling, for transition-metal ions l = 2, one
need to consider only 0 � k � 4, and for rare earth ions l = 3, then 0 � k � 6
should be satisfied. For the crystal field splitting, the energy levels concerned all
have the same parity, and k can only be even. The symmetry group of the active
ions will also impose restrictions on the number of crystal field parameters.

The energy level structure has a big difference between the rare earth ions and
the transition metal ions and so we would like to discuss only the former case in this
chapter. The energy level structure of the transition metal ions will be discussed in
Chap. 7.

3.2 Energy Level Splitting of the Rare Earth Ions

It was mentioned in the previous section that the crystal field action on the rare earth
ions in materials could be seen as a perturbation on the free ions. Hence, in order to
calculate the energy level splitting of the rare earth ions, one can use the wave
functions (more accurately, it should be intermediate-coupling wave functions) of
free ions as the zero-order approximate wave functions. According to the crystal
field, wave functions are expanded as the bases of irreducible representation of
rotation group or those of point group, and the method of crystal field can be
divided into two classes. In the first class, that is the traditional crystal field method,
the basis functions used are the bases of rotation group irreducible representation.
This traditional crystal field method can be further divided into two kinds. The first
kind uses the Hamiltonian expansion (3.2) or (2.49) and, by means of the calcu-
lation method introduced in the last chapter, we can calculate matrix elements
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between energy levels and then solve the secular equation. The second kind of
traditional crystal field method is different from the first only in the bases used.
They are the eigenfunctions of equivalent angular momentum operators and so this
method is called equivalent operator method. If Hc is expressed as

Hc ¼
X
km

Akm

X
i

Pkm rið Þ ð3:7Þ

The following replacement is usually carried out

X
i

P2m rið Þ ! aJ r2
� �

O2m;
X
i

P4m rið Þ ! bJ r4
� �

O4m;
X
i

P6m rið Þ ! cJ r6
� �

O6m

ð3:8Þ

The equivalent operators Okm are obtained by replacing x, y, z in Pkm(r) (k =
2, 4, 6) by Jx, Jy, Jz. The matrix elements of the polynomial Pkm(r) and equivalent
operator Okm can be found in Hufner’s book (1978) [7]. In order to correctly
calculate the equivalent operator factors aJ, bJ, cJ, the intermediate-coupling
approach should be considered [8, 9]. For most of the rare earth ions, these factors
can also be found directly from tables [9]. This method has the advantage of direct
and simple, but it cannot take into account of the mixing effect of free ion state’s
functions belonging to different J values (J mixing effect). If the crystal field is very
strong, this effect can introduce a big error in the calculations of energy levels.

By using the above two methods, the number of crystal field parameters should
be determined by the restrictions of the point symmetry at the site of active ions,
that is, by the symmetry conditions and some of the parameters will be zero. In the
following we will introduce the method for obtaining the crystal field parameters in
different point symmetry conditions.

In the case of rare earth ions, as having been pointed out, 0 � k � 6, (3.2) can
be written as

Hc ¼
X6
k¼0

Xk
q¼0

BkqC
kð Þ
q þBk;�qC

kð Þ
�q

� �
ð3:9Þ

Note that writing in this form the terms with q = 0 have been repeatedly calculated
and so the extra term should be eliminated. Bkq is usually a complex number and
can be written as Bkq = RBkq + iIBkq, with real part RBkq and imaginary part IBkq. In
order to ensure that the crystal field potential is a real number, the real and imag-
inary parts of the crystal field parameters should satisfy the following relations:

RBkq ¼ ð�1Þq RBk�q; IBk�q ¼ ð�1Þqþ 1IBkq ð3:10Þ
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In the introduction of (3.10), the following relations have been used

C kð Þ
q ¼ 4p

2kþ 1

� �
Ykq h;uð Þ ¼ �1ð Þq k � qð Þ!

kþ qð Þ!
	 
1=2

rkPkq coshð Þeiqu

It can be shown1

1The associated Legendre polynomial is defined as

Pkq coshð Þ � Pkq xð Þ ¼ 1� x2ð Þq=2
2kk!

dkþ q

dxkþ q
1� x2
� �k

where x ¼ cos h

in which

dkþ q

dxkþ q
x2 � 1
� �k¼Xkþ q

r¼0

kþ q
r

� �
dr

dxr
x� 1ð Þk d

kþ q�r

dxkþ q�r
xþ 1ð Þk

where
kþ q
r

� �
� kþ qð Þ!

r! kþ q�rð Þ!

Because dkþ q�r

dxkþ q�r
xþ 1ð Þk¼ 0 when r < q, after differential we have

dkþ q

dxkþ q
x2 � 1
� �k¼Xk

r¼q

kþ q
r

� �
k!

k�rð Þ! x� 1ð Þk�r k!
r � qð Þ! xþ 1ð Þr�q

r in the above expressions is a summing index, and one can make a replacement r ¼ r0 þ q;
then the expression changes into

dkþ q

dxkþ q
x2 � 1
� �k ¼Xk�q

r0¼0

kþ q

r0 þ q

 !
k!

k � q� r0ð Þ! x� 1ð Þk�q�r0 k!
r0!

xþ 1ð Þr

¼ kþ qð Þ!
k � qð Þ! x2 � 1

� ��qXk�q

r0¼0

k � q

r0

 !
k!

k � r0ð Þ! x� 1ð Þk�r0 k!
r0 þ qð Þ! xþ 1ð Þr0 þ q

¼ �1ð Þq kþ qð Þ!
k � qð Þ! x2 � 1

� ��q dk�q

dxk�q
x2 � 1
� �k

Pkq xð Þ ¼ 1� x2ð Þq=2
2kk!

dkþ q

dxkþ q
1� x2
� �k¼ 1� x2ð Þq=2

2kk!
� �1ð Þq kþ qð Þ!

k � qð Þ! x2 � 1
� ��q dk�q

dxk�q
x2 � 1
� �k

¼ �1ð Þq kþ qð Þ!
k � qð Þ!

1� x2ð Þ�q=2

2kk!
dk�q

dxk�q
1� x2
� � ¼ �1ð Þq kþ qð Þ!

k � qð Þ!Pk�q xð Þ

Therefore

Pkq coshð Þ ¼ �1ð Þq kþ qð Þ!
k � qð Þ!Pk�q coshð Þ
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Pkq coshð Þ ¼ �1ð Þ�q kþ qð Þ!
k � qð Þ!Pk�q coshð Þ

so that

C kð Þ
q

� ��
¼ �1ð ÞqC kð Þ

�q

Therefore, we have the following expression

Hc ¼
X6
k¼0

Xk
q¼0

RBkq C kð Þ
q þ �1ð ÞqC kð Þ

�q

h i
þ iIBk;�q C kð Þ

q þ �1ð Þqþ 1C kð Þ
�q

h in o

�
X6
k¼0

Xk
q¼0

Vkq þ �Vkq
� � ð3:11Þ

We name the coefficient Nkq as

Nkq ¼ �1ð Þ2q kþ qð Þ!
k�qð Þ!

Vkq ¼ N�1=2
kq rkPkq coshð Þcos q/RBkq

�Vkq ¼ N�1=2
kq rkPkq coshð Þsin q/IBkq

From the above expression of Pkq coshð Þ; we have

Pkq cos p� hð Þ½ � ¼ Pkq �coshð Þ ¼ �1ð Þkþ qPkq coshð Þ

and

e2piq=n ¼ epi
� �2q=n¼ �1ð Þ2q=n

In this way we can introduce the restriction condition of crystal parameters under
the symmetry operation as shown in Table 3.1 given by Sachs [10].

As two examples, we will investigate the cases of point groups D3 and D3d. The
point group D3 consists of three classes, that is, E, C3, and U2 (C2 axis which is
perpendicular to the principal axis). We first study the real crystal field components. It
can be seen from Table 3.1 that the invariance requirements are: (I) q = 3m;
(II) k + 2q/3 + q = 2m. By requirement (I), it is necessary that q is an integer mul-
tiple of 3 and can only be 0, 3, 6 and so on. For even k, in order to satisfy the
requirement (II), 2q/3 + q should be even. It is easy to see that in this case q should be
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an integer multiple of 6 and can be written as q = 6m, which satisfy the requirement
(I) as well; for odd k, in order to satisfy the requirement (II), 2q/3 + q should be odd
and can be 3, 9, 15, …, which also satisfy requirement (I) and can be written as
q = 6m − 3.
Secondly, for the imaginary part of crystal field parameters the invariance
requirements are: (I) q = 3m; (II) k + 2q/3 + q + 1 = 2m. It is easy to find the
conditions for the non-zero crystal field components: for even k, q = 6m − 3, for
odd k, q = 6m.

In this chapter, we will only concern with energy level splitting and discuss only
the effects of even components of crystal field. For the rare earth ions, as has been
pointed out, even k can only be 2, 4, and 6. Therefore, in case of D3 point group
symmetry, the real crystal field components will be Vk0 (k = 2, 4, 6) and V66

corresponding to crystal field parameters Bk0 (k = 2, 4, 6) and B66. On the other
hand, the imaginary components of crystal field parameters are: IB43 and IB63. In
the following table it is simply written as B43 and B63.

The point group D3d is the direct product of D3 and Ci � S2. The crystal field
invariance requirements for D3d are those for D3 plus that for S2, which is
k + 2q = 2m. It practically requires that k should be an even number. Therefore, as
far as the even crystal field is concerned, the crystal field parameters are the same
for the cases D3d and D3. The even crystal field parameters for 32 point groups are
shown in Table 3.2.

Table 3.2 Even crystal field parameters for 32 point groups

Point
group

Crystal field parameters Point
group

Crystal field parameters

C1, Ci All Bkq except Bk0 (k = 2, 4, 6) are real,
others are complex

C3,
S6(C3i)

Bk0 (k = 2, 4, 6) are real, B43,
B63, and B66 are complex

C2,
Cs(C1h),
C2h

Bk0 (k = 2, 4, 6) are real, B22, B4q(q = 2,
4), B6q (q = 2, 4, 6) are complex

D2,
C2v,
D2h

Bk0 (k = 2, 4, 6), B22, B4q

(q = 2, 4) and B6q (q = 2, 4, 6)
are all real

C4, S4
C4h

Bk0 (k = 2, 4, 6) are real, B44 and B64 are
complex

C6,
C3h

C6h

Bk0 (k = 2, 4, 6) are real, B66 is
complex

D4, C4v

D2d, D4h

Bk0 (k = 2, 4, 6), B44, B64 are all real C6v,
D3h,
D6h

D6

Bk0 (k = 2, 4, 6), B66 are all
real

T, O
Td, Oh,
Th

Bk0 (k = 4, 6), B44, and B64 are all real,
and only two independent parameters. In

this case: B44 ¼ 5ffiffiffiffi
70

p B40, B64 ¼ �
ffiffi
2
7

q
B60

D3

D3d

Bk0 (k = 2, 4, 6) and B66 are all
real, B43, B63 are imaginary

C3v Bk0 (k = 2, 4, 6), B43, B63, B66

are all real

Note All the complex numbers have both imaginary and real parts, and they include two
parameters
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The basic functions having the same k and q values in the two traditional crystal
field methods are different by a constant factor and so do their crystal field
parameters. The ratio between their crystal field parameters is listed in Table 3.3.

The energy level splitting of rare earth ions in a crystal field can be obtained by
using the method introduced in the last chapter, and the results are listed in
Table 3.4. It can be seen that the energy level of even number electronic system has
no Kramers degeneracy. When the site symmetry of rare earth ions belongs to 8-
point groups of triclinic, monoclinic, and rhombic crystal systems, the energy level
of even number electronic system has no any degeneracy; but if their site symmetry
is higher, the degeneracy of some energy levels is completely removed while the
others remain twofold or threefold degeneracy, as shown in the following table. For
the odd number electronic system, the crystal field energy level number are all equal
to J + 1/2, and each crystal field energy level has only twofold Kramers degen-
eracy, except for the site symmetry of rare earth ion belongs to 5 cubic point
groups. All the crystal field energy levels of rare earth ion site in the 5 cubic
symmetric point group position still have twofold Kramers degeneracy while some
of the crystal field energy levels have both the twofold crystal field degeneracy and
twofold Kramers degeneracy, thus form the fourfold degeneracy energy levels.
The values of x and y in Table 3.4 are obtained by the relations J ¼ xþ 6k and
J ¼ yþ 3k (k = 0, 1, 2, …). The square bracket in this table indicates that in case
an integer number is obtained this integer should be taken, but if a non-integer
number is obtained, then the next smaller integer number should be taken.

x 0 1 2 3 4 5 y 1/2 3/2 5/2

u1(x) 1 0 0 1 1 0 u(y) 1 0 1

u2(x) 0 0 1 0 1 1

Table 3.3 Ratio of crystal
field parameters used in the
two traditional crystal field
methods

k Q Bkq
�
Akq rk
� �

2 0 2

2 2
ffiffiffi
6

p �
3

4 0 8

4 2 2
ffiffiffiffiffi
10

p �
5

4 3 �2
ffiffiffiffiffi
35

p �
35

4 4 4
ffiffiffiffiffi
70

p �
35

6 0 16

6 2 16
ffiffiffiffiffiffiffiffi
105

p �
105

6 3 �8
ffiffiffiffiffiffiffiffi
105

p �
105

6 4 8
ffiffiffiffiffi
14

p �
21

6 6 16
ffiffiffiffiffiffiffiffi
231

p �
231
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The research work on the crystal field of rare earth ions has two approaches. The
first is by calculating the crystal field parameters through fitting values of energy
level splitting obtained from spectroscopy experiments to the eigenvalues of crystal
field Hamiltonian. The second is by calculating the crystal field parameters using
some kind of theoretical models. The second approach is not really a successful
example, although many scientists have done a lot of work and proposed several
kinds of theoretical models. This is because the crystal field effect is a complicated
effect involving many mechanisms. However, the calculation results of the simple
point charge model considering the shielding effect can be used as staring values for
crystal field fitting. If the crystal field parameters of the point charge model are
denoted by B0

kq, then the reasonable starting values for the crystal field fitting can be
expressed as Bkq and Bkq ¼ 1� rkð ÞB0

kq. The value of r2 is about 0.8, r4 and r6 are
about 0.1 [11], and some recent calculation even shows that r2 approaches 0.9 [2].

The crystal field fitting is generally divided into the following steps: 1. Estimate
initial values of the crystal field parameters; 2. Construct the energy matrix using
estimated or referenced crystal field parameters; 3. The estimation eigenvalues of
the energy level are obtained by diagonalization of the matrix; 4. Establish a
one-to-one correspondence between the experimental and calculated level posi-
tions; 5. Keep the eigenvector of the energy matrix fixed and determine the crystal
field parameter values to minimize the mean square deviation between the exper-
iment and the calculation energy levels; 6. Substitute the crystal field parameters
obtained in the fifth step to the second step, and repeat second to fifth step until the
difference of calculated and experimental energy levels reaches the minimum.

By using fitting method, crystal field analyses have been carried out for many
crystals doped with rare earth ions and there is a large number of data of energy

Table 3.4 The relationship between the energy level splitting and the symmetry of crystal field
[7]

Symmetry/Total angular momentum J: 0, 1, 2, 3, 4, 5, … P

Triclinic C1, Ci

Monoclinic Cs, C2, C2h

Rhombic C2v, D2, D2h

1, 3, 5, 7, 9, 11, …, 2J + 1 1

Trigonal C3, S6, C3v, D3, D3d

HexagonalC3h, C6, C6h,
D3h, C6v, D6, D6h

1, 1, 1, 3, 3, 3, …, 2[J/3] + 1
0, 1, 2, 2, 3, 4, …, [(2J − 1)/3] + 1

1
2

Tetragonal S4, C4, C4h, D2d,
C4v, D4, D4h

1, 1, 3, 3, 5, 5, …, 2[J/2] + 1
0, 1, 1, 2, 2, 3, …, [(J + 1)/2]

1
2

Cubic T, Th, Td, O, Oh 1, 0, 0, 1, 1, 0, …, u1(x) + [J/6]
0, 0, 1, 0, 1, 1, …, u2(x) + [J/6]
0, 1, 1, 2, 2, 3, …, [(J + 1)/2]

1
2
3

Symmetry/Total angular momentum J: 1/2, 3/2, 5/2, 7/2, 9/2, 11/2, …, 2J + 1 P

27 point group except cubic 1, 2, 3, 4, 5, 6, …, J + 1/2 2

Cubic T, Th, Td, O, Oh 1, 0, 1, 2, 1, 2, …, u(y) + [J/3]
0, 1, 1, 1, 2, 2, …, [(J + (3/2))/3]

2
4

Note p is the degeneracy of the level and functions u(x1), u(x2), and u(y) are given as follows
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level and crystal field parameter in the literature. For example, in the Morrison and
Leavitt’s work [12], the energy level and crystal field parameter data for rare earth
ions in 26 crystals are reported. Many data of a series of rare earth ions in different
laser crystals can be found in Kaminskii’s books [13, 14]. In Tables 3.5 and 3.6,
data for two typical laser crystals are listed. It can be seen from these tables that
different rare earth ions have nearly the same crystal field parameters.

It should be pointed out that the two methods mentioned above have a common
disadvantage, that is, their crystal field Hamiltonian and related eigenfunctions are
expanded in terms of basis functions of the rotation group and so the site symmetry

Table 3.5 Crystal field parameters of trivalent rare earth ions in yttrium aluminum garnet crystals
[12]

R3+ B20 B21 B40 B42 B44 B60 B62 B64 B66

Nd 514 129 −363 −2005 −950 −1702 −763 837 −718

Nd 424 101 −191 −2108 −1082 −1784 −681 868 −641

Sm 502 95 800 −1542 −1003 −1386 −650 917 −542

Sm 599 −356 394 −1464 −212 −315 −481 684 −633

Eu 627 56 −344 −1611 −817 −1437 −608 600 −632

Tb 461 165 −169 −1720 −900 −1324 −621 599 −561

Dy 492 89 −60 −1743 −852 −1140 −434 557 −462

Dy 504 72 −71 −1737 −895 −1171 −454 576 −425

Dy 502 73 −77 −1771 −906 −1164 −446 552 −432

Er 424 82 −288 −1522 −899 −1122 −303 492 −322

Er 401 53 −107 −1591 −717 −1021 −349 538 −404

Table 3.6 Crystal field
parameters of trivalent rare
earth ions in yttrium lithium
fluoride [12]

R3+ B20 B40 B44 B60 RB64 IB64

Pr 489 −1043 1242 −42 1213 22.5

Pr 485 −1061 1296 −57.5 1186 0

Nd 441 −906 1115 −26.3 1073 20.6

Nd 480 −973 1119 −60.6 1051 49.0

Nd 502 −962 1105 −27.4 1019 35

Nd 401 −1088 1230 30 1074 0

Dy 330 −704 937 −70.4 609 92.7

Ho 410 −615 819 −27.9 677 32.8

Er 400 −692 925 −21.3 610 149

Er 314 −625 982 −32.4 584 171

Er 190 −1184 858 −44.8 295 0

Er 380 −640 975 −36.8 599 99.8

Tm 359 −608 844 −173 629 0

Tm 333 −648 867 −141 623 3

Yb 281 −556 569 −106 840 953
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properties of the electronic wave function cannot be directly determined. This
increases the indefiniteness and the amount of work in identification of the spectral
lines. There are twomethods to remedy this limitation. One is to introduce crystal field
quantum number which is related to irreducible representation of point group. By
using the fixed relationship between the crystal field quantum number and the mag-
netic quantum number, the irreducible representation of the electronic wave function
can be determined. The second way is to expand the crystal field Hamiltonian and
related eigenfunctions in terms of the basis functions of point group. By the second
method, the crystalfieldHamiltonian and the eigenfunctions are designated by a series
of irreducible representations of the group-chain with the symmetry reduced step by
step. This method is hereby called group-chain scheme of crystal field analysis.

3.3 Crystal Field Quantum Number

In the study of crystal electronic energy level, Hellwege in 1948 [15] introduced
crystal field quantum number according to the following fundamental expression:

M ¼ lðmod qÞ ) M ¼ lþ kq; k ¼ 0;�1;�2; . . .

The value of q is the order of highest symmetry axis of international point group
symbol or the crystal system, that is, triclinic q = 1; monoclinic and rhombic q = 2;
trigonal q = 3; tetragonal q = 4; hexagonal q = 6, for example

C2(2), Cs(m), D2(222), C2v(mm2), D2h(2/m)—q = 2; C3v(3m), D3(32)—q = 3;
D4(422), C4v(4mm), S4(�4), D2d(�4m2)—q = 4; D6(622), C6v(6mm), D3h(�6m2),
C3h(�6)—q = 6.

For an odd number electronic system, from the M composition of the wave
function, the crystal field quantum number l can be determined and then the point
group irreducible representation can be found, because in this case one l value
corresponds to one irreducible representation. Therefore, by means of crystal field
quantum number, one can judge the irreducible representation character of energy
level after their wave function is calculated by usual crystal field analysis.
However, for an even number electronic system, it happens for many point groups,
only one crystal field quantum number l cannot completely determine the irreducible
representation of the wave function, that is, one l value corresponds to two different
irreducible representations and the wave function should be completely characterized
by crystal field quantum number l and m. According to the definition of Hellwege
[15], the wave function transforms as w(−x, y,−z) = eipmw(x, y, z) by the rotation
around y axis through an angle p, on the other hand, the reflection in the plane xz
equal to the rotation around y axis through an angle p plus the inversion through the
symmetry center, that is, one has the relation w(x, −y, z) = eipmIw(x, y, z), where I is
the parity of the wave function. For the even electronic system I = +1 so that one also
has wðx;�y; zÞ ¼ eipvwðx; y; zÞ: Therefore, for Cnv point group and Dn point group,
the same crystal field quantum numbers can be used to describe the relation between
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the wave function and the irreducible representation. In this case, S = eipm in [15]. On
the other hand, becauseD2h = D2 ⊗ Ci, the relation between the quantum number of
wave function and the irreducible representation for point group D2h is similar to that
of the point group D2; the only difference is that the group D2h has both even
irreducible representation Ci

+ and odd irreducible representation Ci
−. The crystal field

quantum number l for an even number electronic system and the crystal field
quantum number l, m for an odd number electronic system with wave functions of
JZ � M are listed in the following to supplement the deficiency of many books in this
field.

1. C2, Cs point groups q = 2.
See Tables 3.7 and 3.8.

Table 3.7 Correspondence of crystal field quantum numbers and irreducible representations with
magnetic quantum number M of wave function and energy level number N for odd number
electronic system

l ¼ �1=2 (C3, C4 conjugate forming a twofold degeneracy energy level)

J M N

1/2 ±1/2 1

3/2 ±1/2, 	3/2 2

5/2 ±5/2, ±1/2, 	3/2 3

7/2 ±5/2, ±1/2, 	3/2, 	7/2 4

9/2 ±9/2, ±5/2, ±1/2, 	3/2, 	7/2 5

11/2 ±9/2, ±5/2, ±1/2, 	3/2, 	7/2, 	11/2 6

13/2 ±13/2, ±9/2, ±5/2, ±1/2, 	3/2, 	7/2, 	11/2 7

15/2 ±13/2, ±9/2, ±5/2, ±1/2, 	3/2, 	7/2, 	11/2, 	15/2 8

Table 3.8 Correspondence of crystal field quantum numbers and irreducible representations with
magnetic quantum number M of wave function and energy level number N for even number
electronic system

C1—l ¼ 0; C2—l ¼ 1

J l M N J l M N

0 0 0 1 5 0 −4, −2, 0, +2, +4 5

1 0 0 1 1 −5, −3, −1, +1, +3, +5 6

1 −1, +1 2 6 0 −6, −4, −2, 0, +2, +4, +6 7

2 0 −2, 0, +2 3 1 −5, −3, −1, +1, +3, +5 6

1 −1, +1 2 7 0 −6, −4, −2, 0, +2, +4, +6 7

3 0 −2, 0, +2 3 1 −7, −5, −3, −1, +1, +3, +5, +7 8

1 −3, −1, +1, 3 4 8 0 −8, −6, −4, −2, 0, +2, +4, +6, +8 9

4 0 −4, −2, 0, +2, +4 5 1 −7, −5, −3, −1, +1, +3, +5, +7 8

1 −3, −1, +1, 3 4
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2. D2, C2v point groups q = 2.
See Tables 3.9 and 3.10.

Table 3.9 Correspondence of crystal field quantum numbers and irreducible representations with
magnetic quantum number M of wave function and energy level number N for odd number
electronic system

l ¼ �1=2 (C5)

J M N

1/2 ±1/2 1

3/2 ±1/2, 	3/2 2

5/2 ±5/2, ±1/2, 	 3/2 3

7/2 ±5/2, ±1/2, 	3/2, 	7/2 4

9/2 ±9/2, ±5/2, ±1/2, 	3/2, 	7/2 5

11/2 ±9/2, ±5/2, ±1/2, 	3/2, 	7/2, 	11/2 6

13/2 ±13/2, ±9/2, ±5/2, ±1/2, 	3/2, 	7/2, 	11/2 7

15/2 ±13/2, ±9/2, ±5/2, ±1/2, 	3/2, 	7/2, 	11/2, 	15/2 8

Table 3.10 Correspondence of crystal field quantum numbers and irreducible representations
with magnetic quantum number M of wave function and energy level number N for even number
electronic system

C1—l ¼ 0, m = 0; C3—l ¼ 0, m = 1; C2—l ¼ 1, m = 0; C4—l ¼ 1, m = 1

J l m M N J l m M N

0 0 0 0 1 5 0 0 −4, −2, +2, +4 2

1 0 1 0 1 0 1 −4, −2, 0, +2, +4 3

1 0 −1, +1 1 1 0 −5, −3, −1, +1, +3, +5 3

1 1 −1, +1 1 1 1 −5, −3, −1, +1, +3, +5 3

2 0 0 −2, 0, 2 2 6 0 0 −6, −4, −2, 0, +2, +4, +6 4

0 1 −2, +2 1 0 1 −6, −4, −2, +2, +4, +6 3

1 0 −1, +1 1 1 0 −5, −3, −1, +1, +3, +5 3

1 1 −1, +1 1 1 1 −5, −3, −1, +1, +3, +5 3

3 0 0 −2, +2 1 7 0 0 −6, −4, −2, +2, +4, +6 3

0 1 −2, 0, +2 2 0 1 −6, −4, −2, 0, +2, +4, +6 4

1 0 −3, −1, +1, 3 2 1 0 −7, −5, −3,
−1, +1, +3, +5, +7

4

1 1 −3, −1, +1, +3 2 1 1 −7, −5, −3,
−1, +1, +3, +5, +7

4

4 0 0 −4, −2,
0, +2, +4

3 8 0 0 −8, −6, −4, −2,
0, +2, +4, +6, +8

5

0 1 −4, −2, +2, +4 2 0 1 −8, −6, −4,
−2, +2, +4, +6, +8

4

1 0 −3, −1, +1, +3 2 1 0 −7, −5, −3,
−1, +1, +3, +5, +7

4

1 1 −3, −1, +1, +3 2 1 1 −7, −5, −3,
−1, +1, +3, +5, +7

4
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In Table 3.10 there are some cases where two different l, m sets (corresponding
to two wave functions with two different irreducible representations) have the same
M component set. For example, if J = 2, two wave functions constituted by the
same M = −1 and M = +1 component set corresponds to two different irreducible
representations C2ðl ¼ 1; v ¼ 0Þ andC4ðl ¼ 1; v ¼ 1Þ: It means that this compo-
nent set forms two linear combinations of u(2, −1) and u(2, 1) corresponding to
two irreducible representations C2 and C4. One can find out their irreducible rep-
resentation according to their transformation character. For the D2 point group, the
wave function u(J, M) transformed by U2 is U2uðJ;MÞ ¼ ð�1ÞJþMuðJ;�MÞ
(because U2YMMðh;uÞ ¼ YJMðp� h; p� uÞÞ: In this example one has

w1 ¼
1ffiffiffi
2

p u 2; 1ð Þþ 1ffiffiffi
2

p u 2;�1ð Þ;w2 ¼
1ffiffiffi
2

p u 2; 1ð Þ � 1ffiffiffi
2

p u 2;�1ð Þ

In this case U2u 2; 1ð Þ ¼ �u 2;�1ð Þ; U2u 2;�1ð Þ ¼ �u 2; 1ð Þ; therefore,
U2w1 ¼ �w1 and U2w2 ¼ w2. By the character table D2 point group in
Appendix B, it can be decided that w1 has irreducible representation C4, that is
l ¼ 1; m = 1, on the other hand, w2 has irreducible representation C2, that is l ¼ 1;
m = 0.

3. C3v, D3 point groups q = 3.
See Tables 3.11 and 3.12.

Table 3.11 Correspondence of crystal field quantum numbers and irreducible representations
with magnetic quantum number M of wave function and energy level number N for odd number
electronic system

J l ¼ �1=2 (C4)
M

l ¼ �3=2 (C5,C6)
M

N

1/2 ±1/2 1

3/2 ±1/2 ±3/2 2

5/2 	5/2, ±1/2 ±3/2 3

7/2 	5/2, ±1/2, ±7/2 ±3/2 4

9/2 	5/2, ±1/2, ±7/2 ±3/2, ±9/2 5

11/2 	11/2, 	5/2, ±1/2, ±7/2 ±3/2, ±9/2 6

13/2 	11/2, 	5/2, ±1/2, ±7/2, ±13/2 ±3/2, ±9/2 7

15/2 	11/2, 	5/2, ±1/2, ±7/2, ±13/2 ±3/2, ±9/2, ±15/2 8
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4. D4, C4v, D2d, S4 point groups q = 4.
See Tables 3.13 and 3.14.

Table 3.12 Correspondence of crystal field quantum numbers and irreducible representations
with magnetic quantum number M of wave function and energy level number N for even number
electronic system

C1—l ¼ 0, m = 0; C2—l ¼ 0, m = 1; C3—l ¼ �1

J l m M N J l m M N

0 0 0 0 1 5 0 0 −3, +3 1

1 0 1 0 1 0 1 −3, 0, +3 2

±1 ±1 1 ±1 	5, 	2, ±1, ±4 4

2 0 0 0 1 6 0 0 −6, −3, 0, +3, +6 3

±1 	2, ±1 2 0 1 −6, −3, +3, +6 2

3 0 0 −3, +3 1 ±1 	5, 	2, ±1, ±4 4

0 1 −3, 0, +3 2 7 0 0 −6, −3, +3, +6 2

±1 	2, ±1 2 0 1 −6, −3, 0, +3, +6 3

4 0 0 −3, 0, +3 2 ±1 	5, 	2, ±1, ±4, ±7 5

1 −3, +3 1 8 0 0 −6, −3, 0, +3+6 3

±1 	2, ±1, ±4 3 0 1 −6, −3, +3+6 2

±1 	8, 	5, 	2, ±1, ±4, ±7 6

Table 3.13 Correspondence of crystal field quantum numbers and irreducible representations
with magnetic quantum number M of wave function and energy level number N for odd number
electronic system

J l ¼ �1=2 (D4, C4v, D2d − C6;
S4 − C5, C6))
M

l ¼ �3=2 (D4, C4v, D2d − C7;
S4−C7, C8)
M

N

1/2 ±1/2 1

3/2 ±1/2 ±3/2 2

5/2 ±1/2 ±3/2, 	5/2 3

7/2 ±1/2, 	7/2 ±3/2, 	5/2 4

9/2 ±9/2, ±1/2, 	7/2 ±3/2, 	5/2 5

11/2 ±9/2, ±1/2, 	7/2 ±11/2, ±3/2, 	5/2 6

13/2 ±9/2, ±1/2, 	7/2 ±11/2, ±3/2, 	5/2, 	13/2 7

15/2 ±9/2, ±1/2, 	7/2, 	15/2 ±11/2, ±3/2, 	5/2, 	13/2 8
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5. D6, C6v, D3h, C3 point groups q = 6.
See Tables 3.15 and 3.16.

Table 3.14 Correspondence of crystal field quantum numbers and irreducible representations
with magnetic quantum number M of wave function and energy level number N for even number
electronic system

C1—l ¼ 0, m = 0; C2—l ¼ 0, m = 1; C3—l ¼ 2, m = 0; C4—l ¼ 2, m = 1; C5—l ¼ �1
For point group S4, only one crystal field quantum numberl is enough. In this case m = 0 and m = 1
has no difference, C1—l ¼ 0; C2—l ¼ 2; C3—l ¼ 1; C4—l ¼ �1

J l m M N J l m M N

0 0 0 0 1 5 0 0 −4, +4 1

1 0 1 0 1 0 1 −4, 0, +4 2

±1 ±1 1 ±1 	3, ±1, ±5 3

2 0 0 0 1 2 0 −2, +2 1

±1 ±1 1 2 1 −2, +2 1

2 0 −2, +2 1 6 0 0 −4, 0, +4 2

2 1 −2, +2 1 0 1 −4, +4 1

3 0 1 0 1 ±1 	3, ±1, ±5 3

±1 	3, ±1 2 2 0 −6, −2, +2, +6 2

2 0 −2, +2 1 2 1 −6, −2, +2, +6 2

2 1 −2, +2 1 7 0 0 −4, +4 1

0 1 −4, 0, +4 2

4 0 0 −4, 0, +4 2 ±1 	7, 	3, ±1, ±5 4

0 1 −4, +4 1 2 0 −6, −2, +2, +6 2

±1 	3, ±1 2 2 1 −6, −2, +2, +6 2

2 0 −2, +2 1 8 0 0 −8, −4, 0, +4, +8 3

2 1 −2, +2 1 0 1 −8, −4, +4, +8 2

±1 	7, 	3, ±1, ±5 4

2 0 −6, −2, +2, +6 2

2 1 −6, −2, +2, +6 2

Note The energy level number N in the above table is for point group D4, C4v and D2d. C1 energy level of
D2d corresponds toC1 energy level of S4,C5 energy level ofD2d split intoC3 andC4 energy levels of S4.C3

and C4 energy levels of D2d correspond to C2 of S4. The determination of the irreducible representation for
the wave function having same M component set can be done by transformation property

Table 3.15 Correspondence of crystal field quantum numbers and irreducible representations
with magnetic quantum number M of wave function and energy level number N for odd number
electronic system

J l ¼ �1=2 (D6, C6v,
D3h − C7; C3h − C7, C8)
M

l ¼ �3=2 (D6, C6v,
D3h − C9; C3h − C11, C12)
M

l ¼ �5=2 (D6, C6v,
D3h − C8; C3h − C9, C10)
M

N

1/2 ±1/2 1

3/2 ±1/2 ±3/2 2

5/2 ±1/2 ±3/2 ±5/2 3

7/2 ±1/2 ±3/2 ±5/2, 	7/2 4

9/2 ±1/2 ±3/2, 	9/2 ±5/2, 	7/2 5
(continued)
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Table 3.15 (continued)

J l ¼ �1=2 (D6, C6v,
D3h − C7; C3h − C7, C8)
M

l ¼ �3=2 (D6, C6v,
D3h − C9; C3h − C11, C12)
M

l ¼ �5=2 (D6, C6v,
D3h − C8; C3h − C9, C10)
M

N

11/
2

±1/2, 	11/2 ±3/2, 	9/2 ±5/2, 	7/2 6

13/
2

±1/2, 	11/2, ±13/2 ±3/2, 	9/2 ±5/2, 	7/2 7

15/
2

±1/2, 	11/2±13/2 ±15/2, ±3/2, 	9/2 ±5/2, 	7/2 8

Note In literature [6] the l value of first column should be exchanged with that of its second column. In
literature [16], l ¼ �3=2 and l ¼ �5=2 were mistakenly corresponded to C8 and C9 of D3h, respectively

Table 3.16 Correspondence of crystal field quantum numbers and irreducible representations
with magnetic quantum number M of wave function and energy level number N for even number
electronic system

D6, C6v, D3h: C1 ! l ¼ 0; m ¼ 0; C2 ! l ¼ 0; v ¼ 1; C3 ! l ¼ 3; v ¼ 1; C4 ! l ¼ 3; v ¼ 0
C5 ! l ¼ �1 twofold degeneracy level; C6 ! l ¼ �2 twofold degeneracy level
C3h; C1 ! l ¼ 0, m is not necessary; C5 and C6 ! l ¼ �1 are two conjugate levels, C3 and
C2 ! l ¼ �2 are also two conjugate levels; C4 ! l ¼ 3, m is not necessary

J l m M N J l m M N

0 0 0 0 1 5 0 1 0 1

1 0 1 0 1 ±1 	5, ±1 2

±1 ±1 1 ±2 ±2, 	4 2

2 0 0 0 1 3 1 −3, +3 1

±1 ±1 1 3 0 −3, +3 1

±2 ±2 1 6 0 0 −6, 0, +6 2

3 0 1 0 1 0 1 −6, +6 1

±1 ±1 1 ±1 	5, ±1 2

±2 ±2 1 ±2 	4, ±2 2

3 1 −3, +3 1 3 1 −3, +3 1

3 0 −3, +3 1 3 0 −3, +3 1

4 0 0 0 1 7 0 0 −6, +6 1

±1 ±1 1 0 1 +6, 0, −6 2

±2 	4, ±2 2 ±1 	5, ±1, ±7 3

3 1 −3, +3 1 ±2 	4, ±2 2

3 0 −3, +3 1 3 1 −3, +3 1

3 0 −3, +3 1

8 0 0 −6, 0, +6 2

0 1 +6−6 1

±1 	5, ±1, ±7 3

±2 	4, ±2, ±8 3

3 1 −3, +3 1

3 0 −3, +3 1

The determination of the irreducible representation for the wave functions having same M component sets
corresponding todifferentl and m can bemade by the transformationproperties under the symmetry operation
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The crystal field quantum number and the Butler symbol [17] of irreducible
representation have a corresponding relationship. For the example of point group
C3v and D3, in the case of an even electronic system, l can be 0 and ±1. The energy
levels with crystal field quantum number l ¼ 0; m = 0 and 1 belong to represen-
tations C1 and C2. They are two one-dimensional irreducible representations cor-
responding to two single energy levels and both have the same quantum number
l ¼ 0 but different m. Butler used “0” and ‘~0’ to discriminate them. The energy level
of l ¼ �1 belongs to representation C3 and is denoted as “1” by Butler to indicate
its twofold degeneracy property. In the case of an odd electronic system, l can only
be ±1/2 and ±1/3. The energy levels of l ¼ �1=2 belong to representation C4.
A single number “1/2” was used by Butler to not only correspond crystal field
quantum number but also indicate its twofold degeneracy property. On the other
hand, for the energy levels C5 and C6 of l ¼ �3=2; Butler used “3/2” and “−3/2” to
indicate that these original two single energy levels are accidental degeneracy to
become a twofold degeneracy level.

By the typical crystal field analysis method, the introduction of crystal field
quantum number has two advantages: First, by means of crystal field quantum
number, the order of secular equation can be reduced in the solution of energy level
and wave function, because different crystal field quantum numbers correspond to
different irreducible representations between which the matrix elements of crystal
field Hamiltonian are zero. For example, if the site symmetry is D3 then to solve the
secular equation for energy level with J = 11/2, by means of crystal field quantum
number in Table 3.11, it can be divided into one 4-order equation with M = 	11/2,
	5/2, ±1/2, ±7/2 and two 2-order equation with M = ±3/2, ±9/2, while their
degeneracy is clear. Secondly, by means of crystal field quantum number, the
irreducible representation character of wave functions solved in the crystal field
analysis can be determined and so it is easy to obtain the information data of
polarization properties of the emission and absorption spectra between different
energy levels. Here is an example of NdAl3(BO3)4 (NAB) crystal. By the typical
crystal field analysis method, the wave functions of two crystal field energy levels
of multiplet 4F3/2 and five crystal field energy levels of multiplet 4I9/2 are as follows
[18] (all the energy levels are twofold degeneracy):
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4F3=2ð1Þ � w1 ¼ j1=2i
w2 ¼ �j1=2i

4F3=2ð2Þ � w1 ¼ 0:7071ij3=2i � 0:7071j � 3=2i
w2 ¼ 0:7071j3=2i � 0:7071ij � 3=2i

4I9=2ð1Þ � w1 ¼ �0:6578j7=2i � 0:5706j1=2i � 0:4916j � 5=2i
w2 ¼ 0:6578j � 7=2i � 0:5706j � 1=2iþ 0:4916j5=2i

4I9=2ð2Þ � w1 ¼ ð�0:1575� 0:5796iÞj9=2iþ ð�0:1575iþ 0:5796Þj � 9j2i
þ ð�0:3576� 0:1070iÞj3=2iþ ðþ 0:3576i� 0:1070Þj � 3=2i

w2 ¼ ð�0:1575� 0:5796iÞj � 9=2iþ ð�0:1575iþ 0:5796Þj9j2i
þ ð�0:3576� 0:1070iÞ � 3=2iþ ðþ 0:3576i� 0:1070Þj3=2i

4I9=2ð3Þ � w1 ¼ ð0:3694� 0:0536iÞj9=2iþ ð0:3694iþ 0:0536Þj � 9=2i
þ ð�0:2404� 0:5504iÞj3=2iþ ð0:2404iþ 0:5504Þj � 3=2i

w2 ¼ ð0:3694� 0:0536iÞj � 9=2iþ ð0:3694iþ 0:0536Þj9=2i
þ ð�0:2404� 0:5504iÞ � 3=2iþ ð0:2404iþ 0:5504Þj3=2i

4I9=2ð4Þ � w1 ¼ �0:9390j7=2i � 0:1755j1=2i � 0:2957j � 5=2i
w2 ¼ �0:9390j � 7=2i � 0:1755j � 1=2i � 0:2957j5=2i

4I9=2ð5Þ � w1 ¼ 0:1746j7=2i � 0:9842j1=2iþ 0:0295j � 5=2i
w2 ¼ 0:1746j � 7=2i � 0:9842j � 1=2iþ 0:0295j5=2i

Above are the linear compositions of wave functions with the same total angular
momentum quantum number J but different magnetic quantum numberM (quantum
number J is omitted). From Table 3.11, it can be determined that the crystal field
quantum number of 4F3/2(1) is l ¼ �1=2; corresponding to irreducible represen-
tation C4; the crystal field quantum number of 4F3/2(2) is l ¼ �3=2; corresponding
to irreducible representations C5, C6; on the other hand, crystal field quantum
number of energy levels 4I9/2(1),

4I9/2(4), and
4I9/2(5) is l ¼ �1=2 corresponding to

irreducible representation C4, while the crystal field quantum number of 4I9/2(2) and
4I9/2(3) is l ¼ �3=2 corresponding to irreducible representations C5, C6. By the
irreducible representation correlation of SO3 ! O ! D3 in Appendix B, it can be
seen that multiplet J = 3/2 is decomposed into one energy level of irreducible
representation C4 and one energy level of irreducible representations C5, C6, while
multiplet J = 9/2 decomposed into three energy levels of irreducible representation
C4 and two energy levels of irreducible representations C5, C6. This is the same as
the result obtained from the wave functions of literature [19] by using crystal field
quantum number method. (The precise point symmetry of Nd3+ ions in NAB crystal
is C2, but in a good enough approximation, it can be described by point group D3

[19].)
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In the NAB crystal, the wave functions and crystal field quantum numbers as
well as their irreducible representations for two crystals field energy levels of
4I11/2(2) and

4I11/2(3) among six energy levels of multiplet 4I11/2 are listed as follows
[18]

4I11=2ð2Þ � w1 ¼ 0:8434j7=2iþ 0:0965j1=2i � 0:4182j � 5=2i � 0:3234j � 11=2i
w2 ¼ 0:8434j � 7=2iþ 0:0965j � 1=2i � 0:4182j5=2i � 0:3234j11=2i
l ¼ �1=2� C4

4I11=2ð3Þ � w1 ¼ ð�0:0413� 0:6617iÞj9=2iþ ð�0:6617þ 0:0413iÞj � 9=2i
þ ð0:1651� 0:1822iÞj3=2iþ ð0:1822þ 0:1651iÞj � 3=2i

w2 ¼ ð�0:0413� 0:6617iÞ � 9=2[ þð�0:6617þ 0:0413iÞj9=2i
þ ð0:1651� 0:1822iÞj � 3=2iþ ð0:1822þ 0:1651iÞj3=2i

¼ �3=2� C5;C6

By using the relation between the crystal field quantum number and the magnetic
quantum number M of wave function component, the following results can be
obtained from the literature [18]: energy levels 4I11/2(1) and

4I11/2(4) both belong to
irreducible representation C4; energy level 4I11/2(5) belongs to irreducible repre-
sentations C5, C6, and energy level 4I11/2(6) also belongs to C4. In Chap. 4, this
information will be used to determine the polarization of emission line.

It should be pointed out that the irreducible representations of above energy
levels are mostly the same as those of Cascales [20] and Jaque [21] obtained by the
analysis of NAB crystal spectral lines. The only difference is in energy levels
4I9/2(3),

4I9/2(4),
4I11/2(2), and

4I11/2(3). One possible reason for this inconsistency is
that the D3 point group symmetry of Nd3+ ions in NAB crystal is only an
approximation. There is C2 symmetry component in its crystal field [18]. In this
situation, r and p polarization transitions are all permitted. This will affect the
results of energy level irreducible representations determined by the polarization
character of spectral lines. It is for this reason, the irreducible representations of
energy levels obtained by spectral data of Nd3+:YAl3(BO3)4 (NYAB) crystal, in
which Nd3+ ions occupy precisely the D3 symmetry positions [22] has some dif-
ference with that of NAB crystal [21].

3.4 Group Chain Scheme Method in Crystal Field
Analysis

The main idea of this method is to use a series of irreducible representations of a
group–subgroup chain to designate the crystal field wave functions and potential
Hamiltonian. If the active ions occupy a G group symmetry position, then from SO3
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(or O3) to G, the group chain will be SO3 (or O3) 
 H1 
 H2 
 H3 
 G. According
to the difference in the group G, one can choose the first group as SO3 or O3. For
example, if G is group D3 then one should select SO3 as the first group of the group
chain, because groupD3 is a subgroup of groupO and groupO is a subgroup of group
SO3, but if G is group D2d then one should select O3 as the first group of the group
chain, because group D2d is a subgroup of group Td, group Td is a subgroup of group
Oh, and group Oh is a subgroup of group O3.

In the case of crystal Nd3+:YAl3(BO3)4, Nd
3+ ions occupy D3 symmetry posi-

tions then the group chain will be SO3 
 O 
 D3. One can use w(J, l, m, k, n) to
describe the energy levels of a multiplet with angular momentum J split by the
crystal field, where l denotes the irreducible representation (irresp.) of first sub-
group H1 in the first symmetry sub-chain SO3 
 H1 and m denotes the irresp. of the
subgroup H2 in the second symmetry sub-chain H1 
 H2 reduced from l irre-
ducible representation of H1. k and n have similar meanings. The crystal field
potential Hamiltonian can be written as

Hc ¼
X

k;l;m;k;n

Vk
l;m;k;n

¼
X

k;l;m;k;n

Ck
l;m;k;nb

kð Þ
l;m;k;n ð3:10Þ

where Ck
l;m;k;n denote the crystal field parameters in the group chain scheme and

b kð Þ
l;m;k;n are the basic vectors.

For rare earth ions, k = 2, 4, 6. All the Vk
l;m;k;n terms should belong to the identity

irresp. of group G, because the crystal field potential must be invariant under the
transformation of rare earth position point group. The method for writing down
(3.10) for rare earth ions is to reduce k ¼ 2; 4 and 6 along the group chain SO3 

H1 
 H2 
 H3 
 G and to find all the channels for reaching the identity repre-
sentations of group G (decomposition of group O3 to point group, the angular
momentum quantum number divided into even parity J+ and odd parity J−, for the
crystal field energy level calculations, only involve the even parity J+. It should be
pointed out that the group chain can have different length for different symmetry
condition; the higher the site symmetry of the active ion, the shorter the length of
group chain. There are a series of tables in Butler’s book [17] which provide a
powerful tool to carry out this work. A simple example is given here to show how
to use the tables for the purpose of writing down crystal field potential Hamiltonian
and their eigenfunctions. According to Butler [17], the notations of irreducible
representations are different from those generally used. The irreducible represen-
tations of the wave functions, crystal field parameters, and coupling coefficient as
well as those in Appendices 2, 3, and 5 will be denoted by the subscripts of related
Beth’s notations in this book. Here, for example, we show the comparison between
them in groups O and D3:
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Group O Mulliken A1 A2 E T1 T2 E′ E″ U′

Bethe C1 C2 C3 C4 C5 C6 C7 C8

Butler 0 ~0 2 1 ~1 1
2

~1
2

3
2

This book 1 2 3 4 5 6 7 8

Group D3 Mulliken A1 A2 E E′ E″

Bethe C1 C2 C3 C4 C5 C6

Butler 0 ~0 1 1
2

3
2 � 3

2

This book 1 2 3 4 5 6

Let’s consider the group chain scheme analysis of crystal field energy levels of
the ground multiplet 4I9/2 of Nd

3+ ions occupying the D3 symmetry positions. The
first step is to investigate the first section SO3 
 O of the group chain. From the
table of branching rule of SO3 ! O section (Chap. 12 in Butler’s book [17] or
Appendix B of this book), one can find that the representation of 9/2 of SO3 group
can be reduced into one 6(C6) and two 8(C8) representations. By using the
branching rule for the O ! D3 section or related irreducible representation
reduction tables, it can be found that the 6(C6) representation of group
O corresponds to the 4(C4) representation of group D3. On the other hand, the 8(C8)
representation of group O can be reduced to 4(C4) ⊕ 5(C5) ⊕ 6(C6) representa-
tions of group D3. In this way, the resolution of the multiplet 4I9/2 can be written as
follows (note that in order to distinguish the difference between two 8(C8) repre-
sentations of group O, the subscripts 0 and 1 are used to write it as 80(C80) and
81(C81))

4I9=2
�� �! 4I9=264

�� �� 4I9=2804
�� �� 4I9=2805

�� �� 4I9=2806
�� �� 4I9=2814

�� �
� 4I9=2815
�� �� 4I9=2816

�� � ð3:11Þ

That is, it splits into seven states. Among these states those corresponding to the
representation 4 of group D3 have twofold degeneracy and those corresponding to
representations 5 and 6 of group D3 have also twofold degeneracy, although each of
them has only one-dimensional representations, but these two irreducible repre-
sentations are conjugated and constitute a twofold degeneracy energy level.
Therefore, the multiplet 4I9/2 will be split into five sub-states by the crystal field
with D3 point group symmetry. The wave functions of other energy states can also
be introduced in the same way. The results are given in the paper published by the
authors [18]. Generally, the crystal field wave function can be expressed as

W ¼
X

a;a1;a2;a3;a4

Ca
a1a2a3a4 aa1a2a3a4j i ð3:12Þ

Let’s consider the expression for the crystal field Hamiltonian. It can be shown
by the branching rule or by the related irresp. reduction tables that the irresp. for
k = 2 in SO3 group will be reduced to two irresps. 3 ⊕ 5 of group O, but irresp. for
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k = 4 will be reduced to four irresps 1 ⊕ 2 ⊕ 3 ⊕ 5 of group O. On the other
hand, the irresp. for k = 6 of SO3 group will be reduced to six irresps.
1 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 50 ⊕ 51 of group O. It can be found that only irresp. 1 and 5 of
group O can be reduced to the identity irresp. 1 of group D3. The possible ways
leading to identity irresp. 1 of group D3 can be shown as follows

2 ! 5 ! 1; 4 ! 1; 4 ! 5 ! 1; 6 ! 1 ! 1; 6 ! 50 ! 1; 6 ! 51 ! 1

It must be noted that k = 6 has two representations 5 of group O, and so two
subscripts 0 and 1 should be used to distinguish them. In this way, the crystal field
Hamiltonian can be written as

Hc ¼ C2
5b

2ð Þ
5 þC4

1b
4ð Þ
1 þC4

5b
4ð Þ
5 þC6

1b
6ð Þ
1 þC6

50b
6ð Þ
50

þC6
51b

6ð Þ
51

ð3:13Þ

where b kð Þ
l denotes the related unit vectors. In (3.13) the subscript 1 used to denote

identity representation of D3 has been omitted. On comparing with Table 3.2, it can
be seen that the number of parameters in (3.13) is the same as that for the traditional
crystal field theory, that is, there are six parameters. By observing the branching
rule, it can be seen, for the even crystal field potential, that the even representations
of groups Oh and Td have one-to-one correspondence and Oh ! D3d, Td ! C3v,
and O ! D3 all have the same table of branching rule. Therefore, one can write the
six parameter expression of the crystal field potential for point group of D3d and C3v

similar to that of D3. The same method can be used to perform the analysis for other
point groups. The crystal field parameters for the 32 point symmetry groups are
listed in Table 3.17.

The numbers of above crystal field parameters in the group chain scheme are the
same as those of Table 3.2 for traditional crystal field scheme. In the case of cubic
system O, Oh, and Td, among the four parameters of the traditional crystal field
scheme, there are two relations shown previously, and so only two independent
parameters, and the same is shown in Table 3.17.

Note that in the above table, owing to the fact that the crystal field potential with
even parity is discussed, the crystal field parameters concerned only with even
parity and so the superscript + used to denote even parity is omitted.

Having the expression for the crystal field Hamiltonian and its eigenfunctions,
the following work is to calculate the matrix elements. In order to do this calcu-
lation, the Wigner–Eckart theorem within the group chain scheme should be used.
A simple introduction of this theorem is given here. For a more detailed discussion,
one can refer to the book published by Butler [17] and Piepho and Schatz [23]. The
Wigner–Eckart theorem has been given in (2.43). Expression of this theorem used
in group chain scheme analysis will be introduced in the following. Similar to
(2.43c), the expression of Wigner–Eckart theorem for point group can be expressed
as
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Table 3.17 Crystal field parameters in the group chain scheme

Crystalline
system

Group Crystal field parameters Subscript point group

Triclinic C1

C1

C2
3111;C

2
5431;C

2
3311;C

2
5522;C

2
5542;C

4
1111;C

4
4231

C4
3111;C

4
3311;C

4
5431;C

4
5522;C

4
5542;C

4
4522;C

4
4542

C6
1111;C

6
3111;C

6
3311;C

6
4231;C

6
50431;C

6
51431;C

6
2311

C6
50522;C

6
51522;C

6
50542;C

6
51542;C

6
4522;C

6
4542

The same as above

O ! D4 ! D2 ! C2

Oh ! D4h ! D2h ! C2h

Monoclinic C2

C2h

Cs

C2
311;C

2
543;C

2
331;C

4
111;C

4
423;C

4
311;C

4
331

C4
543;C

6
111;C

6
311;C

6
331;C

6
423;C

6
5043;C

6
5143

C6
231

The same as above
C2
3111;C

2
5431;C

2
3311;C

4
1111;C

4
4231;C

4
3111;

C4
3311;C

4
5431;C

6
1111;C

6
3111;C

6
3311;C

6
4231;

C6
50431;C

6
51431;C

6
2311

O ! D4 ! D2

Oh ! D4h ! D2h

Oh ! D4h ! D2h ! C2h

Orthorhombic D2

D2h

C2v

C2
31;C

2
33;C

4
11;C

4
31;C

4
33;C

6
11;C

6
31;C

6
33;C

6
23

The same as above
C2
331;C

2
333;C

4
111;C

4
331;C

4
333;C

6
111;C

6
331;C

6
333;C

6
223;

O ! D4

Oh ! Th
Oh ! Td ! D2d

Triangular D3

D3d

C3v

C3

C3i

C2
5 ;C

4
1 ;C

4
5 ;C

6
1 ;C

6
50 ;C

6
51

The same as above
C2
55;C

4
11;C

4
55;C

6
11;C

6
505;C

6
515

C2
51;C

4
11;C

4
51;C

4
42C

6
11;C

6
501;C

6
511;C

6
21;C

6
42

C2
54;C

4
11;C

4
54;C

4
44C

6
11;C

6
504;C

6
514;C

6
21;C

6
44

O

Oh

Oh ! Td

O ! D3

Oh ! Th

Tetragonal D4

D4h

D2d

C4v

C4

C4h

S4

C2
33;C

4
11;C

4
33;C

6
11;C

6
33;

C2
3 ;C

4
1 ;C

4
3 ;C

6
1 ;C

6
3 ;

The same as above
C2
31;C

4
11;C

4
31;C

6
11;C

6
31;

C2
31;C

4
11;C

4
31;C

4
42;C

6
11;C

6
31;C

6
42

The same as above
C2
331;C

4
111;C

4
331;C

4
442;C

6
111;C

6
331;C

6
442

O
Oh

Oh ! Td
Oh ! D4h

O ! D4

Oh ! D4h

Oh ! Td ! D2d

Hexagonal D6

D6h

C6v, D3h

C6

C6h

C3h

C2
1 ;C

4
1 ;C

6
1 ;C

6
6

The same as above
C2
11;C

4
11;C

6
11;C

6
61

C2
11;C

4
11;C

6
11;C

6
61;C

6
62

The same as above
C2
111;C

4
111;C

6
111;C

6
611;C

6
622

D∞

D∞h

D∞h ! D6h

D∞ ! D6

D∞h ! D6h

D∞h ! D6h ! D3h

Cubic T
Th
O
Td, Oh

C4
1 ;C

6
1 ;C

6
2

The same as above
C4
1 ;C

6
1

The same as above

O
Oh

O
Oh
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aa T fð Þ
/

��� ���bbD E
¼ a

a

� �
a�

a�
f
/

b
b

� �
a T fð Þ�� ��bD E

ð3:14Þ

For the cases in which the same irreducible representation appears r times, there
are r different coefficients, we have

aa T fð Þ
/

��� ���bbD E
¼
X
r

a
a

� �
a�

a�
f
/

b
b

� �r

a T fð Þ�� ��bD E
ð3:15Þ

where
a
a

f
/

b
b

� �
refers to the 3jm coefficients corresponding to the 3j coef-

ficients of the rotation group and
a
a

� �
called 2jm coefficient corresponding to the

coefficient of �1ð Þj�m � j
m

� �
of the rotation group. It can be shown [17] that for

the group chain G 
 G1 
 G2 
 Cn, the 3jm coefficients can be reduced as fol-
lowing product

a
a1
a2
a3

b
b1
b2
b3

c
c1
c2
c3

0
BB@

1
CCA

rG
G1

G2

Cn

¼ a
a1

b
b1

c
c1

� �rG

G1

a1
a2

b1
b2

c1
c2

� �G1

G2

a2
a3

b2
b3

c2
c3

� �G2

Cn

ð3:16Þ

where for the group chain G2 
 Cn, 3jm factor
a2
a3

b2
b3

c2
c3

� �G2

Cn

also is the 3jm

coefficients, because the Abelian groups Cn are all one dimension. Therefore, the
3jm coefficients for a group chain are equal to the product of 3jm factors of all the
sections of the chain, no matter how long is the group chain. On the other hand,
there is a factorization relation for the 2jm coefficients, and so one has

aa1a2a3 T kð Þ
f1f2f3

��� ���bb1b2b3D E

¼ a

a1

� �G

G1

a1
a2

� �G1

G2

a2
a3

� �G2

G3

X
r

a� f b

a�1 f1 b1

� �rG

r1G1

a�1 f1 b1
a�2 f2 b2

� �r1G1

r2G2

a�2 f2 b2
a�3 f3 b3

� �r2G2

G3

a T kð Þ�� ��bD EG
r

ð3:17Þ

Applying this theorem to the calculation of the matrix elements of the crystal
field Hamiltonian, and substituting into (3.10), we can obtain
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aa1a2a3a4 Hck kbb1b2b3b4h i

¼ a

a1

� �G

G1

a1
a2

� �G1

G2

a2
a3

� �G2

G3

a3
a4

� �G3

Cn

X
krr1r2r3

Ck
lmn

a� k b

a�1 l b1

� �rG

r1G1

� a�1 l b1
a�2 m b2

� �r1G1

r2G2

a�2 m b2
a�3 n b3

� �r2G2

r3G3

a�3 n b3
a�4 0 b4

� �r3G3

a b kð Þ�� ��bD E ð3:18Þ

where a bk
�� ��b� �

is an irreducible matrix element of basis vector in the represen-
tation space of rotation group for a multi-electronic system. According to the
previous description of the method of multi-electron unit vector (referred to the
discussion of (2.48) to (2.49)), one has

a b kð Þ�� ��bD E
¼ f nSLa U kð Þ�� ��f nSL0bD E

3 C kð Þ�� ��3D E
ð3:19Þ

All the matrix elements can be obtained by using (3.18) and (3.19) as well as the
tables in the books of Butler [17] or Piepho and Schatz [23].
As an example, it can be used to the calculation of the energy levels of Nd3+ ions in
crystal YAl3(BO3)4, which have symmetry of point group D3.
Let’s consider the multiplet 4F3/2. From the branching rule of SO3 ! O reduction, it
can be seen that J = 3/2 corresponds to the irresp. 8 of groupO. By the branching rule
ofO ! D3 reduction, the irresp. 8 of group O corresponds to the irresps. 4 ⊕ 5 ⊕ 6
of group D3. Therefore, the multiplet 4F3/2 will be reduced to three states with wave
functions 3=2; 8; 4j i, 3=2; 8; 5j i, and 3=2; 8; 6j i. One can omit the common first label
and write them as 8; 4j i, 8; 5j i, and 8; 6j i. Equation (3.18) becomes

3=2 a1a2h jHc 3=2 b1b2j i ¼ 1ffiffiffiffiffiffiffi
a2j jp 3=2

a1

� �SO3

O

a1
a2

� �O

D3

X
k

3=2 k 3=2
a�1 l b1

� �SO3

O

a�1 l b1
a�2 0 b2

� �O

D3

Ck
l 3=2 b k�ð Þ�� ��3=2D E

ð3:20Þ

The dimension factor a2j j introduced in (3.20) is due to the fact that the group D3

includes irreducible representation higher than one dimension. Actually, if the
calculation is to go down to the component of related irresps. (i.e. to multiply a 3jm
coefficients or a 3jm factor of D ! C3), the result will be the same.

It can be seen by the branching rule of SO3 ! O and O ! D3 reductions that
2jm factors in (3.20) are all equal to +1. Obviously, the 3jm factor table for
SO3 ! O reduction shows that only when k = 2 the first 3jm factor in (3.20) has
non-zero value. On the other hand, by (3.13), one knows that the only term remain

is that including the factor of C 2ð Þ
5
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3=284
D ���Hc

3=284
��� E

¼ 1ffiffiffi
2

p 3=2 2 3=2
8 5 8

� �SO3

O

8 5 8
4 1 4

� �O

D3

C2
5

3=2
D

b 2ð Þ�� ��3=2E
ð3:21Þ

Note the irresps. C4 of D3 group is a two-dimensional representation.
In the tables of the 3jm factors for SO3 ! O reduction, one can see the fol-

lowing line (can be found in Appendix E or table of Butler [17]):

2 3=2
3=2

5 8 8
0000þ �

ffiffiffi
3

p . ffiffiffi
5

p

Behind the 3jm symbol, there are four “0” in the same line. The first number
indicates the repeat number of the subgroup, and number 0 means there is no
repetition of the subgroup. The number in the second, third, and fourth positions
indicate the repeat number of the branches, and number 0 means there is no rep-
etition of the branches. The symbol + indicates that the 3jm factor will not change
sign under the exchange of columns while the symbol − indicates that the 3jm
factor will change sign under the exchange of columns. Therefore

3=2 2 3=2
8 5 8

� �SO3

O

¼ 2 3=2
3=2

5 8 8

� �SO3

O

¼ �
ffiffiffi
3

p . ffiffiffi
5

p

Similarly, from the table of 3jm factors for O ! D3 reduction, it can be found that

8 5 8
4 1 4

� �O

D3

¼ 5 8 8
1 4 4

� �O

D3

¼ �1
. ffiffiffiffiffiffiffiffiffiffiffi

2� 3
p

Substituting into (3.21), the following can be obtained

3=284
D ���Hc

3=284
��� E

¼ 1ffiffiffi
2

p � 1ffiffiffiffiffi
10

p C2
5

3=2
D

b 2ð Þ�� ��3=2E ¼ 1

2
ffiffiffi
5

p � C2U
ð2ÞC 2ð Þ

5 ð3:22Þ

Similarly

3=285
D ���Hc

3=285
��� E

¼ 1ffiffiffi
2

p
3=2 2 3=2
8 5 8

 !SO3

O

8 5 8

6 1 5

� �O

D3

C 2ð Þ
5

3=2
D

b 2ð Þ�� ��3=2E

¼ �
ffiffiffi
3

pffiffiffi
5

p
� �

� 1

2
ffiffiffi
3

p
� �

C2U
2ð ÞC 2ð Þ

5 ¼ � 1

2
ffiffiffi
5

p � C2U
2ð ÞC 2ð Þ

5

ð3:23Þ
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3=286
D ���Hc

3=286
��� E

¼ 1ffiffiffi
2

p
3=2 2 3=2
8 5 8

 !SO3

O

8 5 8

5 1 6

� �O

D3

C 2ð Þ
5

3=2
D

b 2ð Þ�� ��3=2E

¼ �
ffiffiffi
3

pffiffiffi
5

p
� �

� 1

2
ffiffiffi
3

p
� �

C2U
2ð ÞC 2ð Þ

5 ¼ � 1

2
ffiffiffi
5

p � C2U
2ð ÞC 2ð Þ

5

ð3:24Þ

In the above equation the fact that in D2 group irresp. 5 and irresp. 6 are conjugated
to each other has been taken into account and the formulas for Ck and UðkÞ (in the
above equation k = 2, J = 3/2) are

Ck � 4f C kð Þ�� ��4fD E
;U kð Þ � 4f ; 4FJ U kð Þ�� ��4f ; 4FJ

D E

The table of the 3jm factors for O ! D3 reduction shows that all the non-diagonal
matrix elements between different crystal field states of this multiplet are zero.

More calculation should be done for the states with higher angular momentum
numbers but the method is the same. Let’s look at the example of J ¼ 9=2: Their
energy levels have been given in (3.11) and as a calculation example one of the
off-diagonal matrix elements is calculated in the following

9=264
D ���Hc

9=2804
��� E

¼ 1ffiffiffi
2

p
9=2 2 9=2
6 5 80

 !SO3

O

6 5 80
4 1 4

� �O

D3

C2
5

9=2 b 2ð Þ�� ��D
9=2
E

þ 1ffiffiffi
2

p
9=2 4 9=2
6 5 80

 !SO3

O

6 5 80
4 1 4

� �O

D3

C4
5

9=2 b 4ð Þ�� ��D
9=2
E

þ 1ffiffiffi
2

p
9=2 6 9=2
6 50 80

 !SO3

O

6 50 80
4 1 4

� �O

D3

C6
50

9=2 b 6ð Þ�� ��D
9=2
E

þ 1ffiffiffi
2

p
9=2 6 9=2
6 51 80

 !SO3

O

6 51 80
4 1 4

� �O

D3

C6
51

9=2 b 6ð Þ�� ��D
9=2
E

¼ 1ffiffiffi
2

p � ð�
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 11

p Þ � 1ffiffiffi
3

p C2
5

9=2 b 2ð Þ�� ��D
9=2
E
þ 1ffiffiffi

2
p � 19ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 3� 5� 11� 13
p � 1ffiffiffi

3
p C4

5
9=2 b 4ð Þ�� ��D

9=2
E

þ 1ffiffiffi
2

p � ð�
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 5� 13

p Þ � 1ffiffiffi
3

p C6
50

9=2 b 6ð Þ�� ��D
9=2
E
þ 1ffiffiffi

2
p � ð� 2

ffiffiffi
6

p

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11� 13

p Þ � 1ffiffiffi
3

p C6
51

9=2 b 6ð Þ�� ��D
9=2
E

¼ � 1

3
ffiffiffiffiffi
11

p C2U
ð2ÞC2

5 þ
19

6
ffiffiffiffiffiffiffiffi
715

p C4U
ð4ÞC4

5 �
1

3
ffiffiffiffiffi
65

p C6U
ð6ÞC6

50 �
2

5
ffiffiffiffiffiffiffiffi
143

p C6U
ð6ÞC6

51

ð3:25Þ

The matrix elements for other J values can be found in the literature [18]. The
crystal field and energy level analysis for Nd3+:YVO4 crystal (in which Nd3+ ions
occupy D2d point group position) by group chain method can be found in the
author’s paper [24].

After obtaining the matrix elements, one can use exactly the same method as that
used in the traditional crystal field scheme to solve the secular equations. However,
it is necessary to use the point charge model to calculate the starting values of
crystal field parameters in the traditional crystal field scheme and then obtain those
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parameters in the group chain scheme. The relations between these two sets of
crystal field parameters can be introduced as follows.

The crystal field parameters in the traditional crystal field scheme are the
expanded coefficients of the crystal field Hamiltonian in terms of the irreducible
representation basis functions of the full-rotation group. At the same time, the
crystal field parameters in the group-chain scheme are those expanded in terms of
the irreducible representation basis functions of the point symmetry
group. Therefore, it is easy to obtain their relations by the relation between the two
kinds of basis functions

Hc ¼
X

k;l;m;k;n

C kð Þ
l;m;k;n

b kð Þ
l;m;k;n

¼
X
kq

BkqC
kð Þ
q

C kð Þ
q ¼ 4p

2kþ 1

� �1=2
Ykq

ð3:26Þ

Using the following relation between spherical harmonic function and the basis
function of SO3 group [17]

Ykq ¼ 2kþ 1
4p

� �1=2

r�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k � 1ð Þ 2k � 3ð Þ 2k � 5ð Þ � � �

k!

r
kqj i

C kð Þ
q ¼ 4p

2kþ 1

� �1=2
Ykq

that is

C kð Þ
q ¼ 4p

2kþ 1

� �1=2
Ykq ¼ r�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k � 1Þð2k � 3Þð2k � 5Þ � ��

k!

r
kqj i

and

b kð Þ
lmkn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k � 1Þð2k � 3Þð2k � 5Þ � ��

k!

r
klmknj i

We obtain

X
k;lmkn

Ck
lmknb

kð Þ
lmkn ¼

X
k;lmkn

Ck
lmkn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k � 1Þð2k � 3Þð2k � 5Þ � ��

k!

r
klmknj i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k � 1Þð2k � 3Þð2k � 5Þ � ��

k!

r X
kq

Bkq kqj i
ð3:27Þ
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Hence the relation between the two basis functions can be written as

k0l0m0n0j i ¼
X
k0q0

ak0q0 k
0q0j i

The conjugate of the above formula will be

k0l0m0n0h j ¼
X
k0q0

aþ
k0q0 k

0q0h j ð3:28Þ

Multiply the left-hand side and right-hand side of the second equation of (3.27)
with left side and right side of (3.28), respectively, and apply the orthogonal and
normalized relation, then the following can be shown

Ck
lmkn ¼

X
kq

a�kqBkq ð3:29Þ

The following relation is satisfied by the two sets of crystal parametersX
klmkn

ðĈk
lmknÞ2 ¼

X
kq

ðBkqÞ2 ð3:30Þ

because the two sets of basis functions are transformed by orthogonal transfor-
mation and the length of the vector is invariable by this transformation.

Equation (3.29) is the crystal field parameters in the group chain scheme. By
using this equation the relation between the two kinds of crystal parameters for the
crystal field with D3 point group symmetry will be

C2
5 ¼ �B20

C4
1 ¼ � 1

9

ffiffiffiffiffi
21

p
B40 � 2

9

ffiffiffiffiffi
30

p
B43

C4
5 ¼ � 2

9

ffiffiffiffiffi
15

p
B40 þ 1

9

ffiffiffiffiffi
42

p
B43

C6
1 ¼ � 4

9

ffiffiffi
2

p
B60 þ 2

27

ffiffiffiffiffiffiffiffi
105

p
B63 � 1

27

ffiffiffiffiffiffiffiffi
462

p
B66

C6
50 ¼

1
21

ffiffiffiffiffiffiffiffi
462

p
B63 þ 2

ffiffiffiffiffi
5
21

r
B66

C6
51 ¼

7
9
B60 þ 8

189

ffiffiffiffiffiffiffiffi
210

p
B63 � 8

189

ffiffiffiffiffiffiffiffi
231

p
B66

ð3:31Þ

Noting that in D3 point group, Bkq ¼ Bk;�q, it is easy to show that (3.31) satisfied by
the invariant relation (3.30).

By using the group chain scheme, a series of problems in crystal spectroscopy,
including relative intensities of emission spectra in crystal, J mixing effect and
up-conversion emission have been studied by the authors [18, 25–32]. The calculated
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results are in good agreement with the experimental data. In Chap. 12, this method is
used to deal with spectroscopy problems of the rare earth ions in glasses; hence one
can see that an incisive knowledge on their spectroscopic properties can be obtained.
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Chapter 4
Theory of Radiative Transition

Light emission and absorption are the main processes to be discussed in spec-
troscopy and laser physics, while absorption coefficient, emission and absorption
cross-sections, and oscillator strength are fundamental in the investigation of
solid-state laser materials. Therefore, in order to have a deep understanding of these
processes and calculate correctly all the spectral and laser parameters, it is necessary
to study and systematically analyze these processes from the first principles of
electrodynamics and quantum mechanics as well as to discuss the selection rule and
polarization character of radiative transition by symmetry property of the energy
levels.

4.1 Interactions Between Active Ions and Radiation

The active ions in solid materials have interactions with electromagnetic field,
besides those with lattice ions and lattice vibrations. These interactions are the
physical mechanisms of various performances of solid-state laser. In this chapter,
we will discuss the interaction of active ions with radiation field and introduce the
formulas for calculating the emission and absorption probabilities and other
important spectral parameters.

In order to deal with both stimulated and spontaneous emissions, quantum theory
should be used, because spontaneous emission cannot be accounted for by the clas-
sical or semi-classical theory. As it is well known from quantum theory, the photon
creation operators aþ

ka and photon annihilation operators aka are used to describe
radiation field. These operators satisfy the following commutation relations [1]

aka; a
þ
k0a0

� � ¼ dk;k0daa0 ; aka; ak0a0½ � ¼ 0; aþ
ka ; a

þ
k0a0

� � ¼ 0 ð4:1Þ
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where a denotes the polarization state of the photon with energy �hxk and
momentum �hk. The creation and annihilation operators have the following eigen-
values in the photon-number representation nkaj i

aþ
ka nkaj i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nka þ 1

p
nka þ 1j i _aa ; aka nkaj i ¼ ffiffiffiffiffiffiffi

nka
p

nka � 1j i; aþ
kaaka nkaj i ¼ nkajnka

ð4:2Þ

In this representation, if the vector potential A of the field is expressed as the
following expression

A ¼
X
ka

2p�hc2

xkVe

� �1=2

eaðkÞ aka tð Þeik�r þ aþ
ka tð Þe�ik�r� � ð4:3Þ

then the field energy can be expressed as the sum of all the photons, where

akaðtÞ ¼ akae
�ixkt; aþ

kaðtÞ ¼ aþ
kae

ixkt ð4:4Þ

where eaðkÞ, in which a = 1, 2, is the unit vector used to represent the polarization
direction of the photons, c is the velocity of the photons in vacuum, e refers to the
dielectric constant of the solid material, and V denotes the volume occupied by the
radiation field. According to electromagnetic dynamics [2]

E ¼ � 1
c
@A
@t

ð4:5aÞ

and then one can obtain

E ¼ � 1
c
@A
@t

¼ i
X
ka

2p�hxk

Ve

� �1=2

eaðkÞ akaðtÞeik�r � aþ
ka ðtÞe�ik�r� � ð4:5bÞ

By using the following relations

Z
ei k�k0ð Þ�rds ¼ Vdkk0

and

eaðkÞ � ea0ðkÞ ¼ daa0
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Noting that the polarization vectors are perpendicular to vector k representing the
direction of the light wave, that is, e1ðkÞ � k ¼ e2ðkÞ � k ¼ 0, then the energy
Hamiltonian of the field can be written as

Hph ¼
Z

e
4p

� �
E2ds ¼

X
ka

�hxk aþ
kaaka þ

1
2

� �
ð4:6Þ

where aþ
kaaka represents the operator of the photon number. Equation (4.6) shows

that the energy of each photon mode is equal to the number of photon multiplied by
the energy of a single photon plus zero field energy, and the total energy of the
whole field is the sum of the energy of all the photons. This is a well-known
physical reality. Obviously, (4.3) can be used to obtain a correct result and so it is
justified.

Next, the interaction Hamiltonian between the radiation field and the electron
without spin will be introduced. For the case studied, the electric potential (scalar
potential) can be assumed to be zero. It can be shown that if the interaction
Hamiltonian is written in the form:

H ¼ 1
2m

p� eA
c

� �2

ð4:7Þ

where p is the momentum of the electron with mass m, then the Newtonian
equations for the electron in the field can be introduced correctly. According to
Hamiltonian equations in mechanics, one has [3]

d
dt
r ¼ @H

@p
; � d
dt
p ¼ � @H

@r

where r is the vector of electronic coordinate. There are six equations here, from
which the equations for the component x are:

d
dt
x ¼ @H

@px
;
d
dt
px ¼ � @H

@x

By substituting (4.7) in the above equation, we obtain

d
dt
x ¼ 1

m
px � e

c
Ax

� �
ð4:8aÞ

Obviously, its vector form is

d
dt
r ¼ 1

m
p� e

c
A

� �
ð4:8bÞ
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On the other hand, by (4.7) and x component of the second Hamiltonian equation

d
dt
px ¼ � 1

m
p� e

c
A

� �
� � e

c
@A
@x

� �
ð4:9Þ

Differentiating (4.8a) and using (4.9) and (4.8b), one obtains

m
d2x
dt2

¼ d
dt
px � e

c
d
dt
Ax ¼ dr

dt
� e
c
@A
@x

� e
c
d
dt
Ax ð4:10Þ

Owing to the fact that Ax = Ax(x, y, z, t), the total differential of the last term in the
above equation can be expressed as

dAx

dt
¼ @Ax

@x
dx
dt

þ @Ax

@y
dy
dt

þ @Ax

@z
dz
dt

þ @Ax

@t

Therefore, (4.10) becomes

m
d2x
dt2

¼ e
c

dy
dt

@Ay

@x
� @Ax

@y

� �
� dz

dt
@Ax

@z
� @Az

@x

� �	 

� e
c
@

@t
Ax ð4:11Þ

By means of the well-known electromagnetic dynamics equation [2]

B ¼ r� A E ¼ � 1
c
@A
@t

It is easy to show, by (4.11), that

m
d2x
dt2

¼ eEx þ e
c
ðv� BÞx ð4:12Þ

The right-hand side of the above equation is the x component of the Lorentz force,
and so the formula (4.12) corresponds to the x component of the Newtonian
equation for the electron in the radiation field. Therefore, the interaction
Hamiltonian of (4.7) is justified.

Expanding formula (4.7), one has

1
2m

p� eA
c

� �2

¼ 1
2m

p2 � e
2mc

ðp � AþA � pÞþ e2

2mc2
A2

If the term having the factor A2 is neglected, then the interaction Hamiltonian can
be written as
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Hi ¼ e
2mc

ðp � AþA � pÞ

Expressing p as �i�hr and remembering that r � A ¼ 0, it can be shown that

p � A ¼ A � p� i�hr � A ¼ A � p

Therefore

Hi ¼ e
mc

p � A ¼ e
m

X
ka

2p�h
Vxke

� �1=2

eaðkÞ � p½akaðtÞeik�r þ aþ
ka ðtÞe�ik�r� ð4:13Þ

where p is an operator acting on the electronic wave functions while the creation
and annihilation operators are photon operators acting on photon wave functions.

4.2 Probability of Emission and Absorption Processes

In the last section, the mechanism of the interaction between electron and radiation
field is discussed and the formula for the interaction Hamiltonian has been intro-
duced. The emission and absorption processes and the formulas of their transition
probability will be discussed and derived in this section.

The Hamiltonian Hi, a time-dependent perturbation operator, causes transitions
between different electronic energy levels. According to time-dependent perturbation
theory [4], transition probability can be calculated by using the following formula

Wif ¼ 2p

�h2
i Hij jfh ij j2qðxkÞ � 2p

�h2
M2

ifqðxkÞ ð4:14Þ

where the final state of the radiation field has state density qðxkÞ.
Let us suppose that the radiation field is limited in a cube with volume V = L3,

then the k vector in (4.13) should satisfy the following equations obtained by period
conditions

kx ¼ 2pnx
L

; ky ¼ 2pny
L

; kz ¼ 2pnz
L

where each set of nx, ny, nz represents a state. Thus the number of states between
k and k + dk will be

qðkÞdk ¼ dnxdnydnz ¼ V
8p3

dkxdkydkz ¼ V
8p3

k2dkdXk

where dXk is the infinitesimal solid angle in the direction k. By using k = x/c, the
above expression can be written as
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qðxkÞdxk ¼ V
8p3c3

x2
kdxkdXk

Therefore

qðxkÞ ¼ V
8p3c3

x2
kdXk ð4:15Þ

where c is the velocity of light; it should be replaced by c/n in solid materials.
In the process of absorbing a photon and jumping to the final state, the radiation

field has one photon less than that in the initial state. Expressing the wave function
of initial state as i[ ¼ ue

i [
�� ��nk�� [ , then that of the final state is

f [ ¼ ue
f [

��� ���nk � 1
��� [ . If the ion emits a photon, the wave function of initial

state will be ji[ ¼ jue
i [ nkj [ and that of the final state can be expressed as

f [ ¼ ue
f [

��� ���nk þ 1, where ui
e and uf

e are electronic wave functions for the initial

and final states, respectively. If one calculates the matrix elements of photon
operators at first, then the electronic transition matrix element for the emission
process will be

Mif ¼ e
m

2p�h
Vxke

ðnk þ 1Þ
	 
1=2

ue
f

X
i

eaðkÞ � pie�ik�ri
�����

�����ue
i

* +
ð4:16Þ

For the absorption process it is

Mif ¼ e
m

2p�h
Vxke

nk

	 
1=2
ue
f

X
i

eaðkÞ � pie�ik�ri
�����

�����ue
i

* +
ð4:17Þ

In these two expressions, the summations are over all the involved electrons. It can
be seen from expression (4.16) that even if there is no radiation field present before
emission, that is, nk = 0, the transition matrix elements for emission are different
from zero. It gives rise to spontaneous emission. The other term proportional to nk
presenting the photon number in the radiation field describes the stimulated
emission.

In order to carry out a detailed calculation, it is necessary to expand eik�ri . One
can estimate the order of magnitude of k�ri at first. The electronic coordinate ri is in
the range of an ion radius of 10−8 cm, and the light wavelength k is in the range of
10−4–10− 5 cm, so we have

k � ri ¼ 2pa
k

� 10�3:

Thus it is enough to keep only the first and second terms in the expansion of eik�ri
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eik�ri ¼ 1þ ik � ri; e�ik�ri ¼ 1� ik � ri ð4:18Þ

The first term corresponds to the electric-dipole transition. The transition proba-
bility per unit time for the stimulated absorption and emission of a photon with
frequency xk can be expressed as

Pkðabs:Þ ¼ Pkðst:em:Þ ¼ x3
k

2p�hc3e
nk

X
a¼1;2

Z
dXk ue

f eaðkÞ �
X
i

eri

�����
�����ue

i

* +�����
�����
2

ð4:19Þ

The transition probability for spontaneous emission can be expressed as

Pkðsp:em:Þ ¼ x3
k

2p�hc3e

X
a¼1;2

Z
dXk ue

f eaðkÞ �
X
i

eri

�����
�����ue

i

* +�����
�����
2

ð4:20Þ

In the deduction of expressions (4.19) and (4.20), the Poisson equation in quantum
mechanics _r ¼ i

�h ½H; r� [1] has been used; therefore

p ¼ m_r ¼ im
�h
½H; r�; ue

f jpjue
i

D E
¼ im

�h
Ee
f � Ee

i

� �
ue
f jrjue

i

D E
¼ imxk ue

f jrjue
i

D E

In expressions (4.19) and (4.20),
P

i eri is electric-dipole of the electronic system
and so the corresponding transition is referred to as the electric-dipole transition.

The unit polarization vectors e1(k) and e2(k) are perpendicular to each other and
perpendicular to the photon propagate direction k and so one can discuss the
problem in a coordinate system constituting by these three vectors. If the angle
between radius ri of the electron i and the photon propagating direction k is hi while
the angle between the projection of radius ri on the plane e1(k)–e2(k) and the
polarization vector e1(k) is ui, then we haveX

a¼1;2

ea �
X
i

eri ¼
X
i

eri sinhicos/i þ sinhisin/ið Þ

Owing to the fact that the angles between the photon propagating direction k and
the radius ri of different electron positions are independent of each other and can
assume any different values, then the expressions (4.19) and (4.20) should be
integrated over dX ¼ sinhdhd/. The integral of the term of cosuisinui over ui is
zero. Therefore, the probabilities of stimulated and spontaneous electric-dipole
emissions can be written, respectively, as
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Pkðst:em:Þ ¼ x3
k

2p�hc3e
nk

X
i

Z
sin2 hidX ue

f

D ���ri ue
i

�� ���� ���2

Pkðsp:em:Þ ¼ x3
k

2p�hc3e

X
i

Z
sin2 hidX ue

f

D ���ri ue
i

�� ���� ���2

In the processes of emission and absorption, the electrons with different sub-
script i are independent and the infinitesimal solid angle all have the same
expression dX ¼ sin hdhdu, and so for the spontaneous electric-dipole emission we
have

Pkðsp:em:Þ ¼ x3
k

2p�hc3e

X
i

Z 2p

0

Z p

0
sin3 hdhdu ue

f

D ���ri ue
i

�� ���� ���2

¼ 4x3
k

3�hc3e

X
i

e ue
f

D ���ri ue
i

�� ������
�����
2 ð4:21Þ

In the case of isotropic space, we have

ue
f xij jue

i

D E
¼ ue

f yij jue
i

D E
¼ ue

f zij jue
i

D E
¼ ue

f rij jue
i

D E

The spontaneous transition probability for emission light polarized in any
direction will be the same. In the general cases, the spontaneous transition proba-
bility for emission light polarized in any direction should be calculated according to
the Theorem on the Total Probability [5]. By this theorem, if any event B occurs by
the ways of A1, A2, A3,…, An having probability of p(A1), p(A2), p(A3), …, p(An),
respectively, then the probability of event B to take place by using any of the
above-mentioned ways can be calculated by:

PðBÞ ¼
X
i

pðAiÞpðAi Bj Þ

where p(Ai|B) is the probability of event B occurred by the way of Ai, and p(Ai) is
the probability of the way of Ai. The above summation should be changed to an
integral in the case of continuous variables. Applying it to the isotropic solid
material, considering that the probability of polarization direction in dXp is dXp/4p,
the probability of spontaneous electric-dipole emission with polarization in any
direction becomes:

Pk ¼ 1
4p

Z
4x3

k

3�hc3e

X
i

e ue
f rij jue

i

D E�����
�����
2

dXp ð4:22Þ
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The result is 4x3
k

3�hc3e

P
i
e ue

f rij jue
i

D E����
����
2

, because the space is isotropic. It can be shown

that in this case

Pk ¼ 4x3
k

3�hc3e

X
i

e ue
f xij jue

i

D E�����
�����
2

¼ 4x3
k

3�hc3e

X
i

e ue
f yij jue

i

D E�����
�����
2

¼ 4x3
k

3�hc3e

X
i

e ue
f zij jue

i

D E�����
�����
2

This result has been obtained previously. It leads to the conclusion that in
isotropic solid materials, the electric-dipole spontaneous emission with polarization
in any direction has the same transition probability as that with polarization along x,
y, or z axis. This conclusion seems to be obvious; it is in fact the result of the
theorem on the total probability. Understanding of this point is very important for
the calculation of the transition probabilities in the case of anisotropic crystal.

In the case of anisotropic crystal, the spontaneous emission probability for the
transition emitting the light polarized in the direction of X, Y, and Z of crystallo
physics axes can be written, respectively, as PðXÞðsp:em:Þ, PðYÞðsp:em:Þ, and
PðZÞðsp:em:Þ. For the sake of convenience, S(i, f) is used to represent the sum of the
electric-dipole moment matrix element square in the above formula. The probability
of electric-dipole transition polarizing along a certain direction q is written as

PðqÞðsp:em:Þ ¼ 4x3
ke

2

3�hc3e
SðqÞði; f Þ ð4:23Þ

The theorem on the total probability gives the total spontaneous emission
probability

Pðsp:em:Þ ¼ pðXÞPðXÞðsp:em:Þþ pðYÞPðYÞðsp:em:Þþ pðZÞPðZÞðsp:em:Þ
¼ 1

3
PðXÞðsp:em:ÞþPðYÞðsp:em:ÞþPðZÞðsp:em:Þ
h i ð4:24aÞ

For an uniaxial crystal

Pðsp:em:Þ ¼ pðpÞPðpÞðsp:em:Þþ pðrÞPðrÞðsp:em:Þ
¼ 1

3
PðpÞðsp:em:Þþ 2

3
PðrÞðsp:em:Þ ð4:24bÞ

Note: Dealing with the transition in the solid material, the correction factor
introduced by the refractive index should be included, and this will be discussed
later.

Obviously, by using (4.24a, 4.24b), the error of over estimation in the transition
probability as well as the Judd–Ofelt parameters can be avoided.
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The related expressions for magnetic-dipole and electric-quadrupole transitions
will be briefly discussed now. Suppose the related electric-dipole matrix element is

equal to zero, that is, ue
f rj jue

i

D E
¼ 0, assume the single electron approximation at

the same time. Referring to formula (4.16), the expression of matrix element in
(4.18) will be

ue
f e � pe�ik�r�� ��ue

i

D E
¼ �i ue

f k � rð Þ e � pð Þj jue
i

D E
ð4:25Þ

where ea(k) has been represented by e, for the sake of convenience. In order to
understand their transition mechanisms (k�r) (e�p) is separated into two parts

ðk � rÞðe � pÞ ¼
X
i;j

kiriejpj ¼
X
i;j

kiejripj

¼ 1
2

X
i;j

kiej ripj � rjpi
 �þ 1

2

X
i;j

kiej ripj þ rjpi
 �

¼ 1
2

k� eð Þ � lþ 1
2

X
i;j

kiej ripj þ rjpi
 �

¼ � 1
2
e � k� lð Þþ 1

2

X
i;j

kiej ripj þ rjpi
 �

ð4:26Þ

where i and j are used to denote three components of related vectors and l = r � p is
the orbital angular momentum operator. Similar to the transformation of the matrix
elements of p to that of r in the introduction of formulas (4.19) and (4.20), the
matrix element of the second term in (4.26) can be transformed into

ue
f ripj þ rjpi
�� ��ue

i

D E
¼ imxk ue

f rirj
�� ��ue

i

D E
ð4:27Þ

Therefore

ue
f ðk � rÞðe � pÞj jue

i

D E
¼ � 1

2
ue
f e � ðk� lÞj jue

i

D E
þ imxk

2
ue
f ðe � rÞðk � rÞj jue

i

D E
ð4:28Þ

Substituting (4.28) into (4.16), the spontaneous emission matrix element in single
electron approximation can be expressed as

Mif ¼ e
m

2p�h
Vxke

� �1=2 i
2

ue
f e � ðk� lÞj jue

i

D E
þ mxk

2
ue
f ðe � rÞðk � rÞj jue

i

D E	 

ð4:29Þ

The first and the second terms in (4.29) correspond to the magnetic-dipole transition
and the electric-quadrupole transition, respectively. Based on the above relations,
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the more common Hamiltonians of the magnetic-dipole and the electric-quadrupole
transitions can be obtained by using (4.13).

Hmd ¼ �i
X
ka

2p�hxk

Ve

� �1=2

akaeaðkÞ � ik �Mmdð Þþ i
X
ka

2p�hxk

Ve

� �1=2

aþ
kaeaðkÞ

� ik �Mmdð Þ
ð4:30Þ

and

Heq ¼�
X
ka

p�hx3
k

2c2Ve

� �1=2

aka eaðkÞ � erð Þ ik � rð Þ

þ
X
ka

p�hx3
k

2c2Ve

� �1=2

aþ
ka eaðkÞ � erð Þ ik � rð Þ

ð4:31Þ

While introducing the above equations, unit vector ik in k direction and k ¼ xk
c ik

has been used and the magnetic-dipole of electron is expressed as follows by
including spin magnetic-dipole moment of electrons Msp = (e/mc)s

Mmd ¼ e�h
2mc

ðLþ 2SÞ:

By using formulas (4.30) and (4.31), the probabilities of magnetic-dipole tran-
sition and electric-quadrupole transition can be obtained, respectively. The proba-
bility of spontaneous magnetic-dipole transition is given by

Pmd
sp:em: ¼

4x3
k

3�hc3e
Mmdh iif

��� ���2 ð4:32aÞ

while the probabilities of stimulated emission and absorption of magnetic-dipole
transition are given, respectively, by

Pmd
st:em: ¼ Pmd

ab: ¼
4x3

knk
3�hc3e

Mmdh iif
��� ���2 ð4:32bÞ

Obviously, the magnetic-dipole and electric-quadrupole transition probabilities
are much lower than that of the electric-dipole transition, when all the transitions are
allowed by selection rules. A simple comparison of the order of magnitude can give
us a general idea. For the free ions and atoms, the magnetic-dipole transition
probability will be about 10−5–10−6 times of that of electric-dipole transitions,
while the corresponding figures for electric-quadrupole transition will be only
10−7–10−8.

The situation in solid-state laser materials is different. Owing to the fact that
many transitions in the materials are observed within the same electronic
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configuration, the electric-dipole transitions are forbidden in zero-order approxi-
mation and allowed only if there is a perturbation caused by odd-parity crystal field
or lattice vibration which mix some wave function components with different parity
into the wave functions of the initial and/or final states of the transitions. Therefore,
the transition probability is determined by the odd-parity perturbation. Without this
kind of perturbation, the transitions between states with the same parity can only be
magnetic-dipole or electric-quadrupole type.

The relationship between the probability of the electric-dipole transition and the
symmetry of the active ions can be divided into three kinds [6]:

I. The active ions occupy position with symmetry of the following 11 point groups:

S2 � Ci; S6;C2h;C4h;C6h;D3d;D2h;D4h;D6h;Oh; Th

In these cases, the electric-dipole transition is forbidden. Weak electric-dipole
transition can still be introduced by odd-parity lattice vibration mode. The intensity
of phonon-assisted forced electric-dipole transition is proportional to the reduced
temperature T/Tm (Tm is the melting temperature of the crystal in Kelvin scale). At
the same temperature T, the lower the melting temperature Tm, the higher is the
transition intensity. By this reason, at room temperature, rather strong fluorescence
can be observed in some crystals with low melting temperature, but in the crystals
with high melting temperature any fluorescence cannot be seen. The associated
spectral line is called the phonon sideband, and at the location of one phonon
energy away from the zero phonon line.

II. The active ions occupy positionwith symmetry of the following 18 point groups:

C1;C2;C1h;D2;C2v;C4; S4;D4;C4v;D2d ;C3v;C6;D6;C6v;D3h; T ; Td ;O

In these cases, some pairs of nearest neighbor ion still have or nearly have inversion
symmetry centered on active ions, although the electric-dipole transitions induced
by crystal field and forced by lattice vibration are all allowed, and the wave function
admixture with different parity generally is not large enough and the electric-dipole
transition is generally not strong enough, except in the case where some pairs of
nearest neighbor ion have a large deviation from the inversion symmetry.

III. The active ions occupy position with symmetry of the following three point
groups:

C3;D3;C3h

In these cases, the wave function with different parity has larger admixture and so
has higher electric-dipole transition rate.
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It should be noted that for the active ion, the intensity of electric-dipole transition
depends not only on its site symmetry but also on the number of nearest neighbor
anions deviating from the inversion symmetry as well as their deviating magnitude.

The selection rules for the transition will be given in the next section.

4.3 Selection Rules for Radiative Transition

In principle, if the related matrix element for a transition is non-zero, then the
transition can take place. According to this principle, the selection rules for
electric-dipole, magnetic-dipole, and electric-quadrupole transitions will be intro-
duced. The results can be easily obtained by using the group theory. The discussion
in this chapter does not involve complex coupling coefficients. The notation of the
point group irreducible representation still uses the Bethe’s notation.

4.3.1 Selection Rules for Radiative Transition of Free Ions
and Atoms

According to the group theory, the transition matrix element is a physical quantity
measuring the probability of transition so that it is invariant in a symmetry trans-
formation; therefore, it must belong to the identity representation of the symmetry
group. The total angular momentum quantum number J is a good quantum number
for atoms and free ions. By Chap. 2 we know that the initial state i and the final state
f belong to the representations DJi and DJf of the full-rotation group, respectively.

In the case of an electric-dipole transition, the electric-dipole is a vector
belonging to D1 [7]. The non-zero transition matrix element requires that the
product of DJi � D1 includes DJf . It is easy to obtain that
DJi � D1 ¼ DJi þ 1 	 DJi 	 DJi�1. Therefore, the selection rule for the
electric-dipole transitions is DJ = 0, ±1. It should be pointed out that when Ji = 0,
Jf can only be equal to 1 and so the Ji = 0 ! Jf = 0 transition is forbidden. On the
other hand, the parity of final state should be different from that of the initial state,
because the parity of electric-dipole is odd. In the case of weak spin–orbit coupling,
Russell-Saunders approximation is good enough and so L and S are good quantum
numbers. In this case, the electric-dipole moment operator belongs to representation
D1 (L = 1, S = 0), and the initial state belongs to DLi � DS but the final state
belongs to DLf � DS. Obviously, we have the following selection rules.

DS = 0, DL = 0, ±1, the parity should be changed in the transition but Li = 0 !
Lf = 0 is forbidden.
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For the magnetic-dipole transitions, remembering that magnetic-dipole moment
is an axial vector, which belongs to representation D1g (having even parity), one can
obtain their selection rules by using the same method:

DJ = 0, ±1; the parity should not be changed in the transition while Ji = 0 !
Jf = 0 is forbidden.
When Russell-Saunders approximation is reasonable, we have the following se-
lection rules:

DS ¼ 0; DL ¼ 0; 
1 but Li ¼ 0 ! Lf ¼ 0 is forbidden while it is relaxed by
intermediate coupling; the parity should not be changed in the transition.

Finally, for electric-quadrupole transition, the electric-quadrupole moment is a
second-order tensor belonging to representation D2g. According to tables of rep-
resentation product, one has:
When Ji � 2

DJi � D2 ¼ DJi þ 2 	 DJi þ 1 	 DJi 	 DJi�1 	 DJi�2

When Ji = 1

DJi � D2 ¼ D3 	 D2 	 D1

When Ji = 0

DJi � D2 ¼ D2

Therefore, the selection rules for an electric-quadrupole transition are:

DJ ¼ 0; 
1; 
2; the parity should not be changed in the transition but Ji = 0!
Jf = 0, 1 and Ji = 1 ! Jf = 0 are forbidden.
For Russell-Saunders coupling, DS = 0, DL = 0, ±1, ±2; the parity should not be
changed in the transition but Li = 0 ! Lf = 0, 1 and Li = 1 ! Lf = 0 are forbidden.

4.3.2 Selection Rules for Radiative Transition of Ions
in Materials

In materials, quantum numbers J, L, and S of active ions are not really good
quantum numbers due to the action of crystal field. The good quantum numbers are
the irreducible representations of active ion’s site symmetry group. Therefore,
transition selection rules should be those involving their irreducible representations.
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Certainly, when the crystal field strength is weak enough, the selection rules for
free ions still have weak limitation. As it has been pointed out previously, the
crystal field interaction of transition-metal ions is stronger than that of the spin–
orbit interaction, and so the energy levels of transition-metal ions should be denoted
first by the related irreducible representation but not the atomic quantum number J,
L, and S. Remembering that the electric-dipole has the same irreducible represen-
tations as that of a polar vector (the radius of the electron), but the magnetic-dipole
moment can be expressed as a vector product of two polar vectors, and the tran-
sition selection rules can be introduced easily by applying the tables of the irre-
ducible representation product.

Although the crystal field interaction of rare earth ions in a material is weaker
than their spin–orbit coupling and the quantum numbers J, L, and S can be still used
to describe their energy levels, the odd parity crystal field interaction has its effect
on the electric-dipole transition. Therefore, in this case the selection rules for free
ions will not be valid except that of DS = 0. It can be shown that the following
selection rules are valid:

Dl = ±1, DS = 0, DL � 2l, DJ � 2l (for rare earth ions l = 3), DJ = 2, 4, 6, if
J = 0i or Jf= 0. The forbidden rule of Ji = 0 ! Jf = 0 transition is generally valid
except the special cases in which Judd–Ofelt parameter X0 6¼ 0. This will be
demonstrated in Chap. 5.
Obviously, the electric-dipole transitions inside 4fn configuration (Dl = 0) are for-
bidden in the strict sense but this forbidden rule is partly broken by the odd parity
perturbation. When the spin–orbit coupling is strong, selection rules on L and
S cannot be used. However, if J is still a good quantum number, the selection rule of
DJ � 2l is still valid. For example, in most of solids and liquids, it is difficult to
observe the 6H15/2 ! 6F1/2 transition of Dy3+ ions, although it is easy to observe the
6H15/2 ! 6F3/2 transitions.

Nevertheless, the selection rules related to the irreducible representations of the
site symmetry of active ions are strictly valid. The irreducible representation D1u of
the electric-dipole moment of full-rotational group can be reduced to the irreducible
representations of the site symmetry of active ions as:

D1u ¼
X
j

Pj

If the final state is denoted by JSCf

�� �
and the initial state by JSCij i, then the

selection rule is: Ci � C
f �

P
j Pj, that is, the product of the irreducible repre-

sentation of the initial state Ci with the complex conjugate irreducible representa-
tion of final state C

f should include the irreducible representation of the dipole
moment operator

P
j Pj.

For a uniaxial crystal, the p spectra have selection rules different from those of
the r spectra, because the irreducible representations of p and r dipole moments
are different. Let us take Nd3+:YVO4 as an example to explain how to use group
theory to introduce the selection rule. Nd3+ ions in this crystal occupy D2d point
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group positions; in this group all the irreducible representations are real and so
C
f ¼ Cf . The electric-dipole moment can be reduced to the following irreducible

representations according to branching rule by Butler’s book [8] as well as the table
in Appendix B.

P1u SO3ð Þ ¼ C5 D2dð Þ 	 C4 D2dð Þ

Among these representations, it can be seen by Appendix A that the
one-dimensional C4(D2d) corresponds to the z component of the electric-dipole
moment and the two-dimensional C5(D2d) corresponds to the x, y components of
the electric-dipole moment. If one has Ci ⊗ C4 = Cf ⊕ ���, then the polarization
direction of emission or absorption spectral lines will be along the z direction, that
is, the p polarization transition is allowed. If one has Ci ⊗ C5 = Cf ⊕ ���, then the
polarization direction of emission or absorption spectral lines will be along the x,
y directions, that is, the r polarization transition will be allowed. For the crystal
Nd3+:YVO4, the crystal field wave functions with D2d point symmetry were given
in reference [9]. For the fluorescence spectra corresponding to the transition 4F3/2 !
4I11/2, one of the spectra denoted by b ! a means transition from b level of 4F3/2 to
a level of 4I11/2. These two levels belong to the irreducible representation C7. By
using the table of irreducible representation product (Appendix C or reference [10]),
it is easy to obtain

C7 � C5 ¼ C7 	 C6; C7 � C4 ¼ C6

Obviously, the second product does not include irreducible representation C7 of the
final state. Therefore, the emission spectral line can only be r polarization. For
some other transitions, the above two direct products of irreducible representations
can include irreducible representations of the final state. Thus, the emission or
absorption spectral line can be both r and p polarizations. What kind of polar-
ization can be observed in a particular situation should be determined by their
relative strengths and this problem will be introduced later. The selection rules for
transitions of active ions in materials can be tabulated as in the work of Wybourne
[11] for the case of electric-dipole transitions in the D3h symmetry system which
has even number of electrons (Table 4.1).

For a system with odd number of electrons, similar selection rules can be
obtained. However, double-value representations were introduced to match the

Table 4.1 Selection rule of
electric-dipole transition in
the D3h symmetry system
having even number of
electrons

Irresp. of the level C1 C2 C3 C4 C5 C6

C1 – – – p – r

C2 – – p – – r

C3 – p – – r –

C4 p – – – r –

C5 – – r r r p

C6 r r – – p r
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situations of the half-integer J. In this case, electric-dipole moment belongs to C4

(p-polarization) and C6 (r-polarization) and all the energy levels belong to C7, C8,
and C9 representations. According to the table of representation product, it is easy
to see that:

C7 � C4 ¼ C8;C8 � C4 ¼ C7;C9 � C4 ¼ C9;C9 � C7 ¼ C9 � C8 ¼ C5 	 C6

C7 � C6 ¼ C8 	 C9;C8 � C6 ¼ C7 	 C9;C9 � C6 ¼ C7 	 C8;C9 � C9

¼ C1 	 C2 	 C3 	 C4

Therefore, one has the Table 4.2.
Selection rules for other point group symmetry systems can be obtained in a

similar way. We show here some examples for laser crystals. The rare earth ions
occupy D2d, S4, and D3 positions in YVO4, LiYF4, and YAl3(BO3)4 crystals,
respectively. It should be noted that some of the irreducible representations of the
point groups D3 and S4 are complex representations, and to determine the selection
rule the conjugate irreducible representation of final state must be used. For
example, the electric-dipole transition C3 ! C4 of S4 position because the z com-
ponent of the electric-dipole moment belongs to irreducible representation C2 and
C3 ⊗ (C4)

* = C2 and that the electric-dipole transition C3 ! C4 is p polarized.
According to the same method, the electrical-dipole transition rules of even and odd
electronic systems are listed in Table 4.3 for the positions with point symmetries of
D2d, S4, and D3.

From the wave functions, crystal field quantum numbers, and their corre-
sponding irreducible representations of point group D3 for Nd3+:NAB crystal
quoted in Chap. 3, it can be seen that the polarization character of 22 spectral lines
produced by the transitions from 4F3/2(1, 2) to

4I9/2(1, 2 … 5) and 4I11/2(1, 2 … 6)
are all the same as those calculated in the literature [12] by relating intensity of
emission spectra (see Tables 2–5 of that paper). Especially, two transition lines
which have been observed by Winzer [13] in his laser experiment: irreducible
representations of energy levels 4F3/2(1) and

4I11/2(2) are C4 and that for energy
level 4I11/2(3) is C5,6. According to Table 4.3, the light emitted by the transition of
4F3/2(1)! 4I11/2(2) can be r or p polarization, but the light emitted by the transition
of 4F3/2(1) ! 4I11/2(3) can only be r polarization. These are in agreement with the
calculation results of Table 2 of paper [12] and fully confirmed by the laser
experiment of Winzer [13]. Winzer used two Nd3+:NAB crystal plates with two
different orientations. The surface of first crystal plate was perpendicular to the optic
axis while the direction of pumping light and laser light were parallel to the optical
axis. On the other hand, the surface of second crystal plate was parallel to the

Table 4.2 Selection rule of
electric-dipole transition in
the D3h symmetry system
having odd number of
electrons

Irresp. of the level C7 C8 C9

C7 – r p r

C8 r p – r

C9 r r p
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optical axis while the direction of pumping light and laser light were perpendicular
to the optic axis. From the first crystal plate, r polarization laser emission at
wavelength 1065.5 nm corresponding to the transition of 4F3/2(1) ! 4I11/2(3) was
observed, while from the second crystal plate, r polarization as well as p polar-
ization laser emission at wavelength 1063.8 nm corresponding to the transition of
4F3/2(1) ! 4I11/2(2) also were observed.

Finally, some problems about magnetic-dipole selection rules should be men-
tioned. This kind of transition is allowed within the same configuration. The
probability of magnetic-dipole transition is proportional to the following square of
matrix element

wih jLþ 2S wf

�� ��� ��2
In the case that the related quantum numbers are approximately good quantum
numbers, the selection rules for free ions are mention previously.

Table 4.3 Selection rule of
electric-dipole transition in
the D2d, S4, and D3 symmetry
systems

D2d C1 C2 C3 C4 C5 C6 C7

C1 – – – p r

C2 – – p – r

C3 – p – – r

C4 p – – – r

C5 r r r r p

C6 r r p

C7 r p r

S4 C1 C2 C3 C4 C5 C6 C7 C8

C1 – p r r

C2 p – r r

C3 r r – p

C4 r r p –

C5 – r p r

C6 r – p r

C7 p r – r

C8 r p r –

D3 C1 C2 C3 C4 C5 C6

C1 – p r

C2 p – r

C3 r r r p

C4 r p r r

C5 r – p

C6 r p –
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However, the total transition probability between multiplets is distributed into
different crystal field levels by the interaction of crystal field and their selection rule
should be introduced by the group theory method.
For example in the uniaxial crystal, in case of magnetic-dipole transition, it is
generally necessary to measure three kinds of polarization spectra: a spectrum, the
light transmits along optic axis c with E⊥c, H⊥c; r spectrum, the light transmits
perpendicular to optic axis c with E⊥c, H//c, and p spectrum, the light transmits
perpendicular to optic axis c with E//c, H⊥c. L = r � p is an axial vector and so the
transformation property of Lx, Ly, and Lz is the same as that of Rx, Ry, and Rz. In case
of E⊥c or H⊥c, the condition of electric-dipole transition and magnetic-dipole
transition is

Ci � CRx;y � C
f ¼ Ci � Cx;y � C

f � C1

In case of E//c or H//c, the condition of electric-dipole transition and
magnetic-dipole transition is

Ci � CRz � C
f ¼ Ci � Cz � C

f � C1

If the rare earth ions occupy position with D3 point group, by the irreducible
representation character table of group D3 in Appendix A, it can be seen that Rx, Ry

and x, y belong to irreducible representation C3 while Rz and z belong irreducible
representation C2. Therefore, in case of E⊥c or H⊥c the condition of
electric-dipole transition and magnetic-dipole transition is

Ci � C3 � C
f � C1

On the other hand, in case of E//c or H//c, the condition of electric-dipole transition
and magnetic-dipole transition is

Ci � C2 � C
f � C1

First, to see transition C4,C4, it can be found from Appendix C that the related
irreducible representation product is (note that C4 is a real irreducible
representation)

C4 � C3 � C4 � C1 C4 � C2 � C4 � C1

Therefore, no matter E//c or E⊥c and H//c or H⊥c, C4,C4 can have
electric-dipole and magnetic-dipole transitions. It means that the a,r, and p
polarized spectra between different energy C4 levels can be observed and these
three kinds of spectra all have electric-dipole and magnetic-dipole transition
components.
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Next to see the transition of C4,C5,6. Here C5 and C5 are conjugate to each
other and constitute a doubly degenerate level and so written as C5,6

C4 � C3 � C5;6 � C1; C4 � C2 � C5;6 62 C1

Therefore, between C4 and C5,6 we can have electric-dipole transition with E⊥c and
magnetic-dipole transition with H⊥c. It means that between these two kinds of
energy levels, the a, r, and p polarized spectra can be observed but the r polarized
spectrum only has the component of electric-dipole transition and the p polarized
spectrum only has the component of magnetic-dipole transition.

Last to see the transition of C5,6,C5,6, one has

C5;6 � C2 � C5;6 ¼ C1; C5;6 � C3 � C5;6 62 C1

By using the above discussion method, it can be shown that between two energy
levels C5,6, the p and r polarized spectra can be observed, but p polarized spectrum
only has the component of electric-dipole transition and r polarized spectrum only
has the component of magnetic-dipole transition. The selection rule can be sum-
marized in the Table 4.4.

When rare earth ion occupies a position with other point group, their transition
selection rules can be introduced by the similar method. It should be noted that
Table 4.4 only shows the polarization character between crystal field levels. The
precondition for magnetic-dipole transition is the related transition should be
allowed by magnetic-dipole selection rule between related multiplets.

Because the intensity of electric-quadrupole transition is very weak, we would
not discuss their transition selection rule. Actually, it is easy to use similar method
to introduce their transition selection rule so long as one knows that the components
of quadrupole moment transform as those of x2, y2, z2, xy, yz, and zx, then find out
the irreducible representation of these functions from character table of irreducible
representation.

Table 4.4 Selection rule for rare earth ion occupy D3 point group position

Irresp. of the energy level C4 C5,6

C4 a(ed.,md.), r(ed.,md.), p(ed., md.) a(ed., md.), r(ed.), p(md.)

C5,6 a(ed., md.), r(ed.), p(md.) p(ed.), r(md.)
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Chapter 5
Spectroscopic Parameter and Their
Calculation

5.1 Absorption Coefficient, Absorption (Emission)
Cross-Section, and Oscillator Strength

In the studies of spectroscopic properties of crystals and non-crystalline solid
materials, the physical parameters normally used are absorption coefficient,
absorption (emission) cross-section, and oscillator strength but not the transition
probability. We would like to discuss their physical meaning and calculation for-
mulas while only deal with particular calculation problems of trivalent rare earth ion
in this chapter. The calculation of spectroscopic parameters for transition metal ion
is put into Chap. 7.

In the previous discussion on transition probability, it was assumed that the
electric field acting on the electrons was the electric field of external radiation field.
This is in fact only valid in vacuum. In solid materials, if radiation electric field is
denoted by E, and the local field of electron is denoted by Eloc, then the transition
matrix elements, which involve the electric field acting on the electrons, should be
multiplied by a factor of Eloc/E and the transition probabilities should be multiplied
by a factor of (Eloc/E)

2. This factor has different expressions for different local
symmetries. In cases of high symmetry, it can be shown that its form is [(n2 + 2)/3]2

(where n is refractive index of the solid material). This correction factor is also used
in low symmetry situations now. On the other hand, the velocity of light in the
materiel should be c/n. Therefore, from (4.19) and (4.20), the electric-dipole
absorption (stimulated emission) and spontaneous emission probabilities will
become:

Ped
k ðabs:Þ ¼ Pkðst:em:Þ ¼ 4x3

kn
3�hc3

n2 þ 2
3

� �2

nk lj j2 ð5:1Þ
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Ped
k ðsp:em:Þ ¼ 4x3

kn
3�hc3

n2 þ 2
3

� �2

lj j2 ð5:2Þ

where e = n2 has been used in obtaining the above formulas. The spontaneous
emission probability is usually denoted by A and given by

Aed ¼ 4x3
kn

3�hc3
n2 þ 2

3

� �2

lj j2 ð5:2aÞ

By similar introduction, replacing the refractive index correction factor (n2 + 2)2/
9n by n, it can be shown that the probability of spontaneous magnetic-dipole
emission is

Amd ¼ 4x3
kn

3

3�hc3
Mmd
�� ��2 ð5:2bÞ

Integrations over the solid angle have been made in obtaining these formulas and l
is used to denote the electric-dipole matrix element. Mmd is used to denote the
magnetic-dipole matrix element.

In order to express the transition probabilities of absorption and stimulated
emission, photon number nk is usually replaced by photon energy density d(xk) or
light intensity I(xk). One can obtain their relation in the following discussion.

The energy of photon field per unit volume is photon energy density d(xk)
integrated over frequency xk. It can also be expressed as the k integral of two times
the product of photon energy, photon number, and wave vector density (there are
two polarization directions belonging to each particular direction of k). Therefore
one has

Z
dðxkÞdxk ¼ 2

V

Z
�hxk nk þ 1

2

� �
qðkÞdk

By using

qðkÞdk ¼ V
8p3

4pk2dk ¼ Vx2
kn

3

2p2c3
dxk

we finally have

dðxkÞ ¼ �hx3
kn

3

p2c3
nk
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and

nk ¼ p2c3

�hx3
kn

3
dðxkÞ ð5:3Þ

Substituting (5.3) into (5.1), the following can be obtained

Ped
k ðabs:Þ ¼ Ped

k ðst:em:Þ ¼ 4p2

3�h2n2
n2 þ 2

3

� �2

dðxkÞ lj j2 ð5:4Þ

By using IðxkÞ ¼ c
n dðxkÞ; formula (5.4) changes into

Ped
k ðabs:Þ ¼ Ped

k ðst:em:Þ ¼ 4p2

3�h2nc

n2 þ 2
3

� �2

lj j2IðxkÞ ð5:5aÞ

Similarly

Pmd
k ðabs:Þ ¼ Pmd

k ðst:em:Þ ¼ 4p2n

3�h2c
Mmd
�� ��2IðxkÞ ð5:5bÞ

Let us consider a light beam passing through a system with two energy levels E1

and E2 along x direction (E2 and E1 satisfying xk ¼ E2�E1
�h ). N2 and N1 are the

particle densities of the high and low energy levels having degeneracy g1 and g2,
respectively. The electron in the low energy level absorbs light and go up to the
high energy level; at the same time, the electron in the high energy level emits light
and go down to the low energy level. Therefore, in the calculation of light
absorption, the contributions from two kinds of transition must be considered.
Pk(1n, 2m) is used to denote the transition probability from the nth degenerate state
in level 1 to the mth degenerate state in level 2 and the transition probability from
the mth degenerate state in level 2 to the nth degenerate state in level 1 is expressed
by Pk(2m, 1n). m and n are used to denote the degenerate states of high and low
levels, respectively. Therefore, the total transition probability of the level 1 into
level 2 should be averaged over all the initial degenerate states of level 1 and
summed over all the final degenerate states of level 2. In this calculation, the
spontaneous emission has been neglected, because it is very weak compared to the
stimulated emission. Thus

W12 ¼ 1
g1

X
1n;2m

Pkð1n; 2mÞ ð5:6Þ

Similarly, the total transition probability from level 2 to level 1 is

W21 ¼ 1
g2

X
1n;2m

Pkð2m; 1nÞ ð5:7Þ
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According to (5.1) or (5.5a, 5.5b), Pk (2m, 1n) = Pk (1n, 2m), therefore

g1W12 ¼ g2W21 ð5:8Þ

By means of the results obtained, it can be seen that because of the absorption, the
light passing through a solid material will be attenuated. Its intensity change in a
distance dx can be expressed as

dIðxkÞ ¼ �ðN1W12 � N2W21Þ�hxkdx ¼ � N1 � g2
g1

N2

� �
W12�hxkdx

¼ � 4p2

3�hc
n2 þ 2ð Þ2N1

9ng1

X
1n;2m

l1n2m

�� ��2xkgðxkÞ
" #

IðxkÞdx

� �jedðxkÞIðxkÞdx

ð5:9Þ

where g(xk) is introduced to take into account the absorption line shape and the
value of g1N2/g2 has been neglected, because particle number in the excited state is
much smaller than that in the ground state. Hence the intensity variation by passing
through the media for distance x can be expressed as

IðxkÞ ¼ I0ðxkÞe�jðxkÞx ð5:10Þ

where j(xk) is the absorption coefficient defined as follows

jedðxkÞ ¼ 4p2

3�hc
ðn2 þ 2Þ2N1

9ng1

X
1n;2m

l1n2m

�� ��2xkgðxkÞ ð5:11aÞ

Similarly

jmdðxkÞ ¼ 4p2n
3�hc

N1

g1

X
1n;2m

Mmd
12

�� ��2xkgðxkÞ ð5:11bÞ

The line shape factor g(xk) is normalized according toZ
gðxkÞdxk ¼ 1

If one uses wavelength as variable, it should be noted thatZ
gðxkÞdxk ¼

Z
2pc

k2kn
gðxkÞdkk ¼

Z
gðkkÞdkk ¼ 1
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so that

gðxkÞ ¼ k2kn
2pc

gðkkÞ

The result of
R
jðkkÞdkk should beZ

jedðkkÞdkk ¼
Z

k2kn
2pc

4p2n
3�hc

n2 þ 2ð Þ2N1

9ng1

X
1n2m

l1n2m

�� ��2 !
2pc
kkn

gðkkÞdkk

¼ 8p3�k
3hc

n2 þ 2ð Þ2N1

9ng1

X
1n;2m

l1n2m

�� ��2 ð5:12aÞ

SimilarlyZ
jmdðkkÞdkk ¼

Z
k2kn
2pc

4p2n
3�hc

N1

g1

X
1n2m

Mmd
12

� ��� ��2 !
2pc
kkn

gðkkÞdkk

¼ 8p3�kknN1

3hcg1 1

X
1n;2m

Mmd
12

� ��� ��2 ð5:12bÞ

where the average wavelength can be expressed as �k ¼ R kkgðkkÞdkk.
Equations (5.12a) and (5.12b) are widely applied in spectroscopic calculations.
v = (n2 + 2)2/9n was introduced as a correction factor by refractive index of the
solid material in the literature (e.g. [1]). ThereforeZ

jedðkkÞdkk ¼ N1

g1

8p3�k
3hc

v
X
1n;2m

l1n2m

�� ��2 !
ð5:13Þ

The absorption cross-section and emission cross-section are often used to
express absorption rate and emission rate in spectroscopy. Absorption cross-section
is defined as the quotient of the absorption coefficient divided by the number of
absorption centers per unit volume. Therefore, the absorption cross-section r12(xk)
and r12(kk) as the functions of xk and kk, respectively, can be expressed as

red12ðxkÞ ¼ 4p2xk

3�hcg1
v
X
1n;2m

l1n2m

�� ��2gðxkÞ ð5:14aÞ

rmd
12 ðxkÞ ¼ 4p2xkn

3�hcg1

X
1n;2m

Mmd
12

� ��� ��2gðxkÞ ð5:14bÞ

Z
red12ðkkÞdkk ¼

8p3�k
3hcg1

v
X
1n2m

l1n2m

�� ��2 !
ð5:15aÞ
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Z
rmd
12 ðkkÞdkk ¼

8p3�kn
3hcg1

X
1n2m

Mmd
12

� ��� ��2 !
ð5:15bÞ

The oscillator strength of certain transition in spectroscopy can be defined as the
ratio of the power emitted or absorbed by the transition to the power emitted or
absorbed by a classical oscillator. The power emitted or absorbed by a classical
oscillator can be introduced from the following discussion.

Let us discuss the oscillator strength of electric-dipole transition first. By using
classical radiation theory, the movement equation for an electric-dipole oscillator
can be written as

m€xþR _xþGx ¼ eExe
ixt ð5:16Þ

The second and the third terms in the above equation are the resistant force and the
restoring force of the free oscillator, respectively. The term on the right-hand side of
the equation represents the driving force of the radiation field, where _x denotes the
first-order derivative dx/dt and €x is the second-order derivative d2x/dt2. Assuming
that without the driving force of external electric field, the vibrational frequency of
the free oscillator is x0. The solution of (5.16) should be x0e�ðc=2Þtcos x0t � bð Þ
(the general solution of the homogeneous equation) plus eExcosðxt�aÞ

m =

ðx2
0 � x2Þ2 þ c2x2

� �1=2
(c = R/m) (the special solution of the inhomogeneous

equation). The work done by the radiation field driving force F(x) = eExe
ixt

moving a distant dx is dw = F(x)�dx = F(x)(dx/dt)dt. If F(x) is calculated by the
left side of (5.16), then the power done by radiation field driving force for all the
frequency x will be

P ¼
Z1
0

dw
dt

� �
dx ¼

Z1
0

m€xþR _xþGxð Þ _xdx

Substituting the solution of x into above equation and using the approximate
relations: x0 � x, x2 − x0

2 � 2x(x0 − x), and noting that the time averages of both
€x _x and _xx are zero and the free oscillation component of x decays to zero quickly,
one can obtain

P ¼
Z1
0

R�_x2dx ¼ e2E2
xc

8m

Z1
0

dx

ðx0 � xÞ2 þ c2=4
¼ 2pe2E2

x

8m

where c = R/m has been taken in the above equation. Taking into account the
time-averaged energy density of the radiation field qx ¼ E2

x=8p and the radiation
intensity IðxÞ ¼ cqx, the following relationship between the average absorption
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power of a classical oscillator in the vacuum and the intensity of the radiation field
can be obtained

P ¼ 2p2e2

mc
IðxÞ ð5:17Þ

According to the definition, the power absorbed by the transition of an electron
�hxW12 must be equal to the product of absorption oscillator strength f12 multiplied
by P and the factor of line shape gLðxkÞ; then for the electric-dipole absorption
process

2p2e2

mc
IðxkÞf ed12 gLðxkÞ ¼ �hxW12 ¼

�hxk
P

n;k Pk 1n; 2mð Þ
g1

¼ 4p2

3�hc
n2 þ 2ð Þ2
9ng1

X
1n;2m

l1n2m

�� ��2xkgðxkÞ
" #

IðxkÞ

Equation (5.5a) has been used in the derivation of above equation. Therefore, the
absorption oscillator strength f ed12 of the electric-dipole is expressed as

f ed12 ¼ 2
3�he2

m
g1

xk
ðn2 þ 2Þ2

9n

X
1n;2m

l1n2m

�� ��2 ð5:18aÞ

Similarly, the emission oscillator strength f ed21 of the electric-dipole transition is
expressed as

f ed21 ¼ 2
3�he2

m
g2

xk
n2 þ 2ð Þ2
9n

X
1n;2m

l2n1m

�� ��2 ð5:18bÞ

According to the same discussion method, remember that the refractive index
correction factor (n2 + 2)2/9n should be replaced by n and the electric-dipole matrix
element replaced by the magnetic coupling matrix element. The absorption oscil-
lator strength fmd

12 of the magnetic-dipole transition is expressed as

fmd
12 ¼ 2

3�he2
m
g1

xkn
X
1n;2m

Mmd
12

�� ��2 ð5:18cÞ

The corresponding emission oscillator strength fmd
21 of the magnetic-dipole transi-

tion is expressed as

fmd
21 ¼ 2

3�he2
m
g2

xkn
X
2;1m

Mmd
21

�� ��2 ð5:18dÞ
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The absorption oscillator strength f ed12 of electric-dipole transition for the trivalent
rare earth ions in solids is in the order of magnitude 10−5–10−6 and for the divalent
rare earth ions, it can reach the order of magnitude 10−2–10−3, nearly the same as
that for the transition in 3dn configurations of transition-metal ions.

One can see another definition of the absorption oscillator strength in the liter-
ature as follows

f ed12 ¼ 2
3�he2

m
g1

xk

X
1n;2m

l1n2m

�� ��2 ð5:19Þ

It gives the ratio of the power of the absorption to that of the classical oscillator, if
the transition concerned is taking place in the vacuum. Obviously, the definition
what we adopted can describe the actual situation for the transition occur in material
and is much more reasonable. It is also the same as that given by Judd [2] and other
classical literature [3].

5.2 Analysis of the Absorption Coefficients of Anisotropic
Crystal

Consider the general situation of biaxial crystals. If the absorption coefficients of
the crystal for the light polarized in the direction of crystal physical axes X, Y, and
Z are denoted by jX, jY, and jZ, respectively, the absorption coefficients for the
light polarized in any direction can be calculated by the following way.

Suppose the light is polarized in the direction with angle variables h and u in the
spherical coordinate system constituted by crystal physical axes X, Y, and Z, then
the electric field E of the light has projections of Esinhcosu, Esinhsinu, and Ecosh
in the directions of coordinate axes X, Y, and Z, respectively. Obviously, the light
intensity of the component polarized in the directions of X, Y, and Z will be
I0sin

2hcos2u, I0sin
2hsin2u, and I0cos

2h, respectively. After the light pass through a
crystal with thickness L, the intensity I of the transmitted light will be

I h;uð Þ ¼ I0 sin2 h cos2 u exp �jðxÞL
� �

þ I0 sin2 h sin2 u exp �jðyÞL
� �

þ I0 cos2 h exp �jðzÞL
� �

I h;uð Þ=I0 ¼ sin2 h cos2 u exp �jðxÞL
� �

þ sin2 h sin2 u exp �jðyÞL
� �

þ cos2 h exp �jðzÞL
� �

where jðxÞ, jðyÞ, jðzÞ are the absorption coefficients of the crystal for the light
polarized in the direction of the axes X, Y, and Z, respectively. It can be demon-
strated that the absorption coefficients of the crystal for the light with wavelength k
can be calculated by
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jðk; h;uÞ ¼ lim
jL!0

� 1
L
ln

I h;uð Þ
I0

� �� �
¼ jðxÞðkÞ sin2 h cos2 uþ jðyÞðkÞ sin2 h sin2 uþ jðzÞðkÞ cos2 h ð5:20Þ

In a uniaxial crystal, the absorption coefficients for the light polarized in X and
Y directions are equal and denoted by jr and the absorption coefficient for the light
polarized in Z direction is denoted by jp, then

jðk; h;uÞ ¼ jðrÞðkÞ sin2 hþ jðpÞðkÞ cos2 h ð5:21Þ

If the unit vector of the electric field E is denoted by e, and the unit vectors of X,
Y, and Z axes are denoted by x, y, and z, respectively, then (5.20) can be expressed
as

jðe; kÞ � jðxÞðkÞðe � xÞ2 þ jðyÞðkÞðe � yÞ2 þ jðzÞðkÞðe � zÞ2 ð5:20aÞ

It is known from Born and Wolf [4] that an unpolarized light transmitting in the
direction of h′, u′ with intensity I0 can be considered as two lights polarized in the
direction perpendicular to the direction of h′, u′ with intensity I0/2. If these two
polarized light beams pass through a uniaxial crystal with thickness L, the intensity
of the transmitted light can be expressed as

Itðk; h0;u0Þ ¼ 1
2
sin2h0I0 exp �jðpÞL

h i
þ 1

2
1þ cos2h0
� �

I0 exp �jðrÞL
h i

where h′ is the angle between the incident light I0 (i.e. the normal direction of the
crystal) and the optic c axis (i.e. the direction of the crystal physical Z axis). The
absorption coefficient can be expressed as

jðk; h0;u0Þ ¼ lim
jL!0

� 1
L
ln

1
2
sin2 h0 exp �jðpÞðkÞL

h i
þ 1

2
1þ cos2 h0
� �

exp �jðrÞL
h i	 


ð5:22Þ

This expression is the same as that obtained by Lomheim and Deshazer [11].
Physically, j(k, h′,u′) should be obtained in the condition of jL � 1. Satisfying
this condition then one has

jðk; h0;u0Þ � 1
2
jðpÞ sin2 h0 þ 1

2
jðrÞ 1þ cos2 h0
� � ð5:23Þ

Note that the angle parameters h′, u′ are different from h, u.
The expression (5.23) can also be obtained by (5.21): According to the method

mentioned above, an unpolarized light with intensity I0 and transmitting in the
direction of h′, u′ can be decomposed into two lights of intensity I0/2 with
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polarization direction h1 = h′ + p/2, u1 = u′ and h2 = p/2, u2 = u′ + p/2,
respectively. Then by (5.21) one can obtain

jðk; h0;u0Þ ¼ 1
2

jðrÞðkÞsin2ðh0 þ p=2Þþ jðpÞðkÞcos2ðh0 þ p=2Þ
� �

þ 1
2

jðrÞðkÞsin2ðp=2Þþ jðpÞðkÞcos2ðp=2Þ
� �

¼ 1
2

jðrÞðkÞcos2h0 þ jðpÞðkÞsin2h0
� �

þ jðrÞðkÞ
2

¼ 1
2
jðpÞðkÞsin2h0 þ 1

2
jðrÞðkÞð1þ cos2h0Þ

Clearly, for a biaxial crystal, calculated by (5.20), we can show

1
4p

Z
CdX ¼

Z
1
4p

Z
jðk; h;uÞdX

� �
dk ¼ 1

3

Z
jðxÞdkþ 1

3

Z
jðyÞdkþ 1

3

Z
jðzÞdk

¼ 1
3

CðXÞ þCðYÞ þCðZÞ
� �

ð5:24Þ

where C is the integral of the absorption coefficient over the wavelength range and
is usually called absorbance. For uniaxial crystal, one has

1
4p

Z
CdX ¼

Z
1
4p

Z
jðk; h;uÞdX

� �
dk ¼ 1

3

Z
jðpÞdkþ 2

3

Z
jðrÞdk

¼ 1
3
CðpÞ þ 2

3
CðrÞ ð5:25Þ

The probability of spontaneous transition polarized in q direction can be
expressed as

PðqÞðsp:em:Þ ¼ 8pcn2

3k4N1
CðqÞ ð5:26Þ

Pðsp:em:Þ ¼ 8pcn2

3k4N1
CðXÞ þCðYÞ þCðZÞ
� �

ð5:27Þ

Pðsp:em:Þ ¼ 8pcn2

k4N1

1
3
CðpÞ þ 2

3
CðrÞ

� �
ð5:28Þ

One of the author’s paper [5] has shown that if one cannot measure polarized
absorbance data but would like to obtain effective J–O parameters, then the total
integrated absorbance resulting from unpolarized integrated absorbance data mea-
sured by three thin crystal slice mutual perpendicularly cutting from an arbitrary
orientation crystal cube is a good approach to the space integrated averaged
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absorbance required by (5.24) and (5.25). This can also be generally demonstrated
by (5.20a). Suppose three unpolarized light beams are input in three mutually
perpendicular directions of e1, e2, and e3, respectively, then by using the method
mentioned above, an unpolarized light of intensity I0 can be decomposed into two
polarized lights of intensity I0/2 with polarization directions perpendicular to each
other, in the condition of jL � 1. According to (5.20a), the absorption coefficients
in these three directions can be calculated by

j1 � jðe1Þ � 1
2

ðe2 � xÞ2jðxÞ þ ðe2 � yÞ2jðyÞ þ ðe2 � zÞ2jz
� �

þ 1
2

ðe3 � xÞ2jðxÞ þ ðe3 � yÞ2jðyÞ þ ðe3 � zÞ2jz
� �

j2 � jðe2Þ � 1
2

ðe1 � xÞ2jðxÞ þ ðe1 � yÞ2jðyÞ þ ðe1 � zÞ2jðzÞ
� �

þ 1
2

ðe3 � xÞ2jðxÞ þ ðe3 � yÞ2jðyÞ þ ðe3 � zÞ2jðzÞ
� �

j3 � jðe3Þ � 1
2

ðe1 � xÞ2jðxÞ þ ðe1 � yÞ2jðyÞ þ ðe1 � zÞ2jðzÞ
� �

þ 1
2

ðe2 � xÞ2jðxÞ þ ðe2 � yÞ2jðyÞ þ ðe2 � zÞ2jðzÞ
� �

Taking e1, e2, and e3 as three axes of the coordinate system, the transformation of
the XYZ coordinate system into the e1e2e3 coordinate system is a real orthogonal
transformation with constant vector length. Remember that x, y, z are unit vectors in
the XYZ coordinate system, so that

X
i¼1;2;3

ðei � xÞ2 ¼ xj j2¼ 1;
X

i¼1;2;3

ðei � yÞ2 ¼ yj j2¼ 1;
X

i¼1;2;3

ðei � zÞ2 ¼ zj j2¼ 1

Apply these three relations, then one can obtain

jð1Þ þ jð2Þ þ jð3Þ � jðxÞ þ jðyÞ þ jðzÞ

On integration over the wavelength, it is shown that

Cð1Þ þCð2Þ þCðZÞ � CðXÞ þCðYÞ þCðZÞ ð5:29Þ

Obviously, when one cannot measure the polarized absorption spectra of ani-
sotropic crystals, it is possible to use the above method and formulas (5.27) and
(5.28) to calculate the probability of spontaneous emission and radiative lifetime. It
should be emphasized once again that in order to obtain a precise result the con-
dition jL � 1 should be satisfied.
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5.3 Judd–Ofelt Approximation and Related Parameter

In the studies of spectroscopic properties of rare earth ions, the intensity parameter
method introduced by Judd [2] and Ofelt [6] has become a popular and useful
method, especially the Judd–Ofelt three-parameter method, although it involves
many approximations. In this section, the Judd-Ofelt three-parameter method will
be introduced. By using this method, radiative lifetime, quantum efficiency,
emission cross-section, and absorption cross-section of laser and luminescent
materials can be calculated (see, e.g., [7]).

From the discussion previously given, it can be seen that the spontaneous
electric-dipole emission polarized in the direction eq from an energy level with
degeneracy g2 has a probability of

PedðqÞ
sp ¼ 64p4m3n

3hc3g2

n2 þ 2
3

� �2

ufh jeq � P uij i�� ��2 ð5:30Þ

where P denotes the electric-dipole moment

P ¼ �e
X
i

ri ð5:31Þ

If one uses spherical tensors C1
q to express electronic radius r, then

eq � P ¼ �e
X
i

ri C1
q

� �
i
� Dð1Þ

q ð5:32Þ

where q can be −1, 0, and +1, for uniaxial crystal, q = 0 corresponds to p polar-
ization and q = ±1 corresponds to r polarization.

Similar to (5.14a), the integral of the absorption coefficient can be written as

Z
jedðqÞðxÞdx ¼ 4p2 �xN1

3�hcg1
v uf

 ��eq � P uij i�� ��2¼ 4p2e2 �xN1

3�hcg1
v uf

 ��Dð1Þ
q uij i

��� ���2 ð5:33Þ

The problem now is how to calculate the above matrix elements. For the rare
earth ions, electric-dipole transition between levels of the same 4fn configuration is
forbidden originally. The method of Judd and Ofelt is based on the consideration
that the wave function of another configuration with different parity can mix into
the transition involving initial and final state wave functions and then the
electric-dipole transition matrix element will be non-zero. This admixture is
produced by the interactions of odd parity, namely odd crystal field potential and
odd crystal vibrational mode. If one denotes the odd crystal field potential as Vod,
then the perturbed wave functions expanded to first-order terms of Vod are given by
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ui ¼ u f nJiMið Þ �
X
uðnlÞ

f nJiMih jVod uðnlÞj i
E f nJiMið Þ � E uðnlÞð ÞuðnlÞ ð5:34Þ

where u(nl) are the wave functions with parity different from those of the 4f n

configuration (the most important is the 4f n−15d configuration). An expression for
uf can be written in the same way. The odd parity crystal field potential Vod can be
expressed as

Vod ¼
X
t;p

BtpD
ðtÞ
p ;DðtÞ

p ¼
X
i

rti CðtÞ
p

� �
i

ðt is an odd numberÞ

In this way, the matrix element of the electric-dipole transition in a particular
polarization direction q can be expressed as

uf D
ð1Þ
q

��� ���ui

D E
¼ �

X
uðnlÞ

f nJiMi Vodj juðnlÞh i uðnlÞ Dð1Þ
q

��� ���f nJfMf

D E
E f nJiMið Þ � E uðnlÞð Þ

�
X
uðnlÞ

f nJiMi D
ð1Þ
q

��� ���uðnlÞD E
uðnlÞ Vodj jf nJfMf
 �

E f nJfMf
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ð5:35Þ

It can be shown that [2]
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u nlð Þ

f nJiMi D
ð1Þ
q

��� ���u nlð Þ
D E

u nlð Þ DðtÞ
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��� ���f nJfMf

D E
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�1ð Þpþ qBtp 2kþ 1ð Þ 1
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� �
1
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k

l

t

3

	 

3h jr lj i 3h jrt lj i 3 Cð1Þ�� ��D

li

� l CðtÞ�� ��D
3i f nJiMih jUðkÞ

pþ q f nJfMf

�� �
ð5:36Þ

In order to calculate the above matrix element, three approximations have to be
introduced. First, it is assumed that the states of u(nl) are degenerate with respect to
all the quantum numbers except nl. This is a rather rough assumption because, for
example, if the intermediate states are those of 4f n−15d configuration, the energy
range of this configuration is from 50,000 cm−1 to at least 100,000 cm−1. Hence
this approximation will introduce considerable errors in the final result. The second
approximation is

Eðf nJfMf Þ � EðuðnlÞÞ ¼ E f nJiMið Þ � EðuðnlÞÞ ð5:37Þ

This is also a very rough approximation, because the errors introduced by taking,
for example, a transition from a initial state at about 20,000 cm−1 higher than the
ground state to the final ground state, the center of the intermediate 4f n−15d
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configuration state assumed to be at 75,000 cm−1, the difference of E(f nJfMf) −
E(u(nl)) and E(f nJiMi) − E(u(nl)) can be larger than 20%. However, it makes
possible to combine the two summations in (5.35) into one term and neglect all
details of the intermediate states, by using

P
u nlð Þ uðnlÞj i uðnlÞh j ¼ 1. The third

approximation is that all the crystal field energy levels of the initial and final
multiplets have the same population. However, the different crystal field energy
level is in fact populated according to the Boltzmann distribution. On the other
hand, from the property of 3-j symbol explained in Chap. 2, one has

1
q

k
�p� q

t
p

� �
¼ ð�1Þ1þ kþ t t

p
k

�p� q
1
q

� �
ð5:38Þ

Therefore, only when k is even, the two parts of (5.35) do not counteract each other,
because t is an odd number and 1 + t + k should be even. From the tangle condition
of 6-j symbol in (5.36) it can be seen that k should satisfy 0 � k � 6, so that k = 2,
4, and 6.

Further calculation of (5.35) can be found in the papers of Judd and Ofelt [2, 6]
as well as the books on the angular momentum theory and irreducible tensor
method [8, 9]. The final result is simply introduced in the following. Owing to the
fact that the J–O three-parameter method is used to calculate the electric-dipole
transition probability of multiplet to multiplet, the probability should be summed
over different crystal field levels within the same multiplet. Assuming the same
population in all the crystal field levels of the same multiplet, it can be shown that
the square of transition matrix element in (5.33) can be expressed as

SðqÞ Ji ! Jf
� � ¼ Jf D

ð1Þ
q

��� ���JiD E��� ���2¼ X
k¼2;4;6

XðqÞ
k ½aSLJ	f UðkÞ�� ���� ��½aSLJ	iD E��� ���2 ð5:39Þ

The square of reduced matrix element ½aSLJ	f UðkÞ�� ���� ��½aSLJ	iD E��� ���2 can be cal-

culated by intermediate approximation wave functions or found from the tables in

Kaminskii’s book (Ref. 7 of Chap. 2). The J–O parameters XðqÞ
k are determined by

the spectroscopic experimental method, because the odd crystal field potential and
odd lattice vibrational mode contributions are difficult to be calculated theoretically.

Combining (5.33) with (5.39) and remembering that the degeneracy of the initial
state is 2 Ji + 1, it gives:
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CðqÞ ¼
Z

jðqÞðkÞdk ¼ N1

2Ji þ 1
8p3�ke2

3hc

n2q þ 2
� �2

9nq

X
k¼2;4;6

XðqÞ
k aSLJ½ 	f UðkÞ�� ���� �� aSLJ½ 	i
D E��� ���2

¼ N1

2Ji þ 1
8p3�ke2

3hc

n2q þ 2
� �2

9nq
SðqÞ Ji ! Jfð Þ

ð5:40Þ

where CðqÞ is referred to as absorbance of polarization q, then the experimental line
strength S becomes

SðqÞðJi ! Jf Þ ¼ 2Ji þ 1
N1

3hc
8p3�ke2

9n

n2 þ 2ð Þ2 C
ðqÞ ð5:41Þ

By using the determined experimental line strength CðqÞ, SqðJi ! Jf Þ can be cal-

culated by (5.41) and then XðqÞ
k can be obtained by the fitting method according to

(5.39).
It should be reminded that the J–O parameters are used for the electric-dipole

transition of rare earth ions. The magnetic-dipole transition probability between
some pairs of energy levels of some rare earth ions can reach an order of magnitude
comparable with that of electric-dipole transition. For example, the 4I15/2 ! 4I13/2
transition of Er3+ ions and the 4I8 ! 4I7 transition of Ho3+ ions. The experimental
spectra include the contribution of the magnetic-dipole transition, and how to
correctly calculate J–O parameters in this case, which will be explained in the next
section.

Now it is possible to demonstrate the selection rule of electric-dipole transition
about quantum number JLS for rare earth ion in materials, which has been men-
tioned in Sect. 4.3. As has been demonstrated above, the k should be 2, 4, and 6. On
the other hand, the reduced matrix element of unit operator in (5.39) includes a

6-j symbol
J J 0 k
L0 L S

	 

(see (2.52)). From its triangle condition, it can be seen

that the transition allowed for DJ � 6, DL � 6 and in case of J or J′ = 0, only DJ =
2, 4, 6 is allowed. J = 0 $ J′ = 0 is forbidden except in the case of the matrix
element of zero-order unit tensor operator U(0) exist, which will be discussed later,
while by the dSS′ factor in (2.52) DS = 0 should be satisfied.

The interaction between different multiplets with different J values resulted from
even parity crystal field, that is J mixing effect, has not been taken into account in
the above calculation. Include this J mixing effect, and then the square of reduced
matrix element of unit tensor operator should be replaced by the following
expression [10, 13]
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f UðkÞ�� ���� ��W0
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D E��� ���2
ð5:42Þ

The coefficients |a(WJ, W′J′)|2/(2 J′+1) is the J mixing coefficients that take into
account the mixing of multiplets W′J′ and WJ. The summation of above equation
involves all the multiplet W′J′, which is near to the multiplet WJ, and the multiplet
WJ itself. When W′J′ 6¼WJ, one has

aðWJ;W0J 0Þj j2¼
X

k¼2:4;6

S2k
WJ UðkÞ�� ���� ��W0J 0
 ��� ��2
EðWJÞ � EðW0J 0Þ½ 	2

In case of W′J′ = WJ, the J mixing coefficients should be calculated by

a WJ;W0J 0ð Þj j2¼ ð2Jþ 1Þ 1�
X

w0J 0 6¼wJ

a WJ;W0J 0ð Þj j2
2J 0 þ 1

2
4

3
5

The key for the calculation of J mixing coefficients is the calculation of crystal
field strength coefficient Sk

2, which should be calculated by means of the data of
crystal field energy level, because Sk

2 is obtained by the following expression

D2ðWJÞ ¼ 1
2Jþ 1

X
n

EðWJnÞ � �EðWJÞ½ 	2 ¼ 1
2Jþ 1

X
k¼2;4;6

S2k WJh UðkÞ�� ��WJi�� ��2

where E(WJn) is nth crystal field energy level of multiplet WJ and �EðWJÞ is the
center of all these energy levels.

The practical work of laser material research is not always necessary to deter-
mine precisely the crystal field energy level position of the multiplets obtained by
low temperature spectral measurement. Therefore, it is impossible to use the above
equations to calculate line strength S including J mixing effect. However, this effect
works only in the case that the strength of even crystal field is strong enough and
the energy interval between different multiplets is small. For the Nd3+:YVO4

crystal, the RMF error of the absorption intensity parameter S of the 4I9/2 multiplet
measure at 300 K, taking into account the J mixing effect only to reduce its value
from 0.152 to 0.147 [13]. Certainly, with J mixing effect some of the forbidden
magnetic-dipole transition can have certain intensity.

Although Judd [2] and Ofelt [6] neither take into account the effect of wave
function mixing by ligand wave functions with different parity nor the mixing
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contributions of electron-electron Coulomb interaction with spin-orbital interaction
in higher approximation, (5.39) is a generally applicable equation. During the past
40 years, after considering all the above mixing effects as well as the dynamic
interaction, electron correlation interaction, and relativistic effect, and calculating
the second and third-order approximation terms, the (5.39) is still correct. The odd
k term introduced by mass polarization effect is small and it has its influence only in
the case that the transition is forbidden by standard selection rule; for example, the
transition from the multiplet of J = 0 to those odd number J in Eu3+ ions [14]. Other
odd k term is very small.

After the spectral measurement, the data of absorbance can be calculated from
absorption bands. Usually the number of absorbance data obtained is larger than
that of Xk (k = 1, 2, 3). The reduced matrix elements of unit operator can be found
directly from the literature or calculated by intermediate-coupling wave function
and the data are given in the table of literature [15]. (Some of these usually used in
laser materials can be found in Appendix D.) By means of (5.41), several equations
can be listed and then the fixing method is used to calculate the J–O parameters.

As pointed out in Sect. 5.2, for the anisotropic crystals, the absorbance in dif-
ferent direction is usually different, which corresponds to different strength
parameter. For a biaxial crystal, there are three kinds of absorption spectra with
polarization direction parallel to X, Y, and Z crystallophysics axes and for a uniaxial
crystal there are p spectrum with polarization direction parallel to the optics axis
and r spectrum with polarization direction perpendicular to the optics axis. Using
the data of these spectra—Xk

(X), Xk
(Y), and Xk

(Z)—Xk
(p) and Xk

(r) can be calculated and
then the emission probability in different polarization directions can be obtained.
However, it should be noted that in the evaluation of radiative lifetime, the theorem
on the total probability should be used, otherwise the calculated transition proba-
bility will have a deviation of three times to the actual value [16–18]. If the
transition probability for q polarization is Pq, the total transition probabilities
P should be

P ¼ 1
3

X
q

PðqÞ ð5:43Þ

and so in the general calculation, Xk should be

Xk ¼ 1
3

X
q

XðqÞ
k ð5:44Þ

When one uses (4.23) to calculate spontaneous transition probability in any
polarization direction, the integral of the absorbing line strength is related to the
integral of the absorbance over all the solid angle. Thus by (5.40) we have,
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1
4p

Z
SðJ ! J 0ÞdXp ¼ 2Jþ 1

N
3hc
8p3�k

9n

ðn2 þ 2Þ2
1
4p

Z
CdX ð5:45Þ

where the choice of coordinates is arbitrary, the variables of the integral in the
left-hand side can be in the polarization direction hp, up and the variables of the
integral in the right-hand side can be in the light beam direction h, u. Both integrals
are integrated over solid angle 4p.

Kaminskii [17] discussed the relation between fluorescence branching ratio and
the ratio of X ¼ X4=X6 for Nd

3+ ions. The ratios of fluorescence branching for the
transitions 4F3/2 ! 4I9/2,

4I11/2,
4I13/2, and

4I15/2 can be obtained by the curves given.
They can also be obtained by the following relations given by Lomheim et al. [11]

b0:9 lm ¼ ð0:319Xþ 0:077Þ=; b1:06 lm ¼ ð0:105X þ 0:287Þ=A;
b1:3 lm ¼ 0:09=A; b1:8 lm ¼ 0:002=A;A ¼ 0:425X þ 0:457

The following relationship between the X value and the cell parameter a0 of
garnet crystal can be obtained

X ¼ La0ð1þCDa0Þþ 0:128

where Da0 is the difference of lattice parameter a0 between the discussed crystal and
the lutetium aluminum garnet crystal. For the neodymium-doped rare earth garnet,
one has L = 8.04 � 10−3 nm−4, C = 10.1 nm−1. The calculated results of five
neodymium-doped garnets are as follows:

Crystal Lu3Al5O12 Y3Al5O12 Lu3Ga5O12 Y3Ga5O12 Gd3Ga5O12

a0 (nm) 1.1915 1.201 1.2183 1.2777 1.2376

Experimental value
of X

0.29 0.30 0.35 0.38 0.41

Calculated value of
X

0.29 0.31 0.35 0.38 0.40

In many cases, (5.39) gives us a satisfactory analysis of experimental results.
However, negative values of X2 have been found for some ions, for example Pr3+,
and it is contradictory to the theory of Judd and Ofelt. Occasionally, two sets of
parameters are needed; one used to analyze the transitions between low energy
states, and the other used to analyze the transitions between high energy states. This
problem comes from the approximate hypotheses mentioned above in the derivation
of (5.39), of which the influence of the second hypotheses may be the largest.

To deal with this problem, (5.39) should be modified to [12].
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1
E f nJið Þ � E uðnlÞð Þ þ �1ð Þk 1

E f nJf
� �� E uðnlÞð Þ

" #2

� E f nð Þ � E uðnlÞð Þ½ 	2
4

Xk aSLJ½ 	f UðkÞ�� �� aSLJ½ 	i
D E��� ���2

ð5:46aÞ

where the strength parameters with k = 1, 3, 5 have been taken into account.
However, this modification is still in the theoretical scheme of Judd and Ofelt
three-parameter method. By using this expression of S(Ji ! Jf), the problem of
negative X2 values can be solved but the difference between experiment and cal-
culated results is still large. In order to reduce the error, the authors of paper [12]
adopted a method called normalized method. By using their method, in the
least-square fitting the root-mean square deviation is calculated not by

RMSDS ¼
PN

i¼1 Sexpi � Scali

� �2
N � 3

 !1=2

ð5:46bÞ

but by

RMSDS ¼
PN

i¼1
Sexpi �Scali

Sexpi

� �2
N � 3

0
B@

1
CA

1=2

ð5:46cÞ

Dunina [20] took into account the non-orthogonal wave function and obtained
another expression of line strength S

S Ji ! Jf
� � ¼ X

k¼2;4;6

Xk ½aSLJ	f UðkÞ�� ��½aSLJ	iD E��� ���2 � 1þ EJi þEJf � 2E4f 2

E4f 4d � �E4f 2

� �

ð5:46dÞ

where E4f 4d is the lowest 4f5d configuration energy level position of Pr3+ ion and
�E4f 2 is the average energy level position of 4f2 configuration. However, by (5.46b)
and (5.46d) we can solve the problem of negative X2 but the relative error is still
large. If one uses (5.46c) and (5.46d) to evaluate J–O parameters, not only the
problem of negative X2 can be solved but also the relative error can be reduced.
This situation can be seen in the crystal Pr3+:GdCOB [21] and Pr3+:LaB3O6 [22].

A problem in the calculation of spectral intensity parameter must be mentioned.
It is the existing parameter X0. Although the matrix element of zero-order unit
tensor operator U(0) does not appear in the table published by Nielson and Koster
[15], Piepho and Schatz [23] have given its expression
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lnSL Uð0Þ�� ��lnS0L0D E
¼ dLL0dSS0nð2Lþ 1Þ1=2ð2lþ 1Þ�1=2 ð5:47Þ

It can be seen that this matrix element exists only in the case that the quantum
numbers L and S of initial and final states are equal to each other. On the other hand,
it can be seen by (5.36), when k = 0, the triangle condition of 3-j symbol requires
t = 1, so that only in case B1p 6¼ 0 the matrix element U(0) is non-zero. When the
ions are at a position symmetry of point group G, the condition of B1p 6¼ 0 is that
the irreducible representation 1− of group O3 resolves to the irreducible represen-
tations of group G that includes the identity representation C1. From the correlation
table in Appendix B, it can be seen that one-order odd crystal field component
appeared only in the following ten point groups: Cs, C1, C2, C3, C4, C6, C2v, C3v,
C4v, and C6v. Moreover, because of (5.47), the effect of X0 should be considered
only in the case that the intermediate-coupling interaction is strong and both the
initial and final multiplets have a larger proportion of the same LS
intermediate-coupling wave function. One example is Eu3+:LaF3 crystal, in which
Eu3+ ions occupy C2 point group position. The transitions of 5D0 ! 7F0,

5D1 !
7F1, and

5D2 ! 7F2 all have the contribution of X0. Among these, the transition of
5D0 ! 7F0 only results from the effect of X0. By the fitting of spectral data, it can be
found that in this sample X0 is smaller than X2 and X4 by two orders of magnitude,
while smaller than X6 by one order of magnitude [24].

The three-parameter method of Judd-Ofelt can only be used in the calculation of
spectroscopic parameters for multiplet-to-multiplet transitions. However, nowa-
days, the rare earth spectroscopic measurement, especially those performed at low
temperature, can give us well-resolved spectral lines of the transitions between
crystal field levels. In order to evaluate this kind of fine structure spectral lines, an
all-parameter method should be used. The primary all-parameter method was
introduced by Axe in 1963 [25]. It adopts Bk

tp � AtpYtk as parameters, where k = 2,
4, 6 and t is limited to be k ± 1, p can be 0, ±1, ±2,…, ±t (the number depends on
the symmetry of the crystal field.). Newman [26] pointed out that Axe’s method is
not generally applicable, because it is assumed that the single-electron approxi-
mation and the overlapping approximation should be satisfied by the interactions
between rare earth ions and their ligands. It does assume that all of the RE-L
interactions are cylindrical and independent of each other. If these conditions are
not satisfied, then new parameters should be added. In fact, the restriction on t will
be lost, and let it can be equal to k. Reid and Richardson developed and applied the
all-parameter method in a series of papers [27–31]. According to their method,
electric-dipole line strength for a transition from wi to wf can be written as

Si!f ¼
X
ktp

Bk
tp

X
lq

k 1 t
l �q �p

� �
ð�1Þk�1þ pþ qð2tþ 1Þ1=2 wi U

ðkÞ
l

��� ���wf

D E�����
�����
2

ð5:48Þ
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where
k 1 t
l �q �p

� �
is the 3-j symbol and the unit tensor matrix element

wih jUðkÞ
l wf

�� �
can be expressed as the product of 3-j symbol and reduced tensor

matrix elements wi UðkÞ�� ��wf

 �
by using Wigner–Eckart theorem. The numbers of

the parameters Bk
tp can reach 81 in general cases, where k = 2, 4, 6, and t is limited

to be k and k ± 1, while p can be 0, ±1, ±2, …, ±t. Considering the crystal field
symmetry restrictions, these numbers can be reduced differently in different sym-
metry situations. If the rare earth ions occupy point group O positions, there are
only two parameters while for the point group D2d it should be 10. In case of a
lower symmetry, the parameters increase rapidly. For the point groups D3 and D2,
there are 12 and 18 parameters, respectively. In order to evaluate the line strength
with so many parameters, one should have low temperature spectral data with
high-enough resolution. Burdick et al. [32] used the data of 97 well-resolved
absorption spectral lines of Nd3+:YAG crystal at 10 K to calculate 18 parameters
Bk
tp of D2 symmetry. Stefan et al. [33] used this method for the line strength

evaluation of Er3+:Cs3Lu2Cl9 crystal. They measured the polarization absorption
spectra at 10 and 16 K as well as the up-conversion fluorescence and excitation
spectra at 4.2 K and used data of 95 spectral lines to calculate 12 parameters Bk

tp in
C3v symmetry. The obtained parameters were used to evaluate the line strengths and
to simulate the absorption and emission lines not observed previously.

It should be mentioned that to calculate the transitions between crystal field
levels, there is a method introduced by the authors with parameters much less than
those of the all-parameter method [34–36]. The relative line strengths and line to
line transition possibilities were calculated for NdAl3(BO3)4, Nd3+:YVO4, and
Nd3+:YAl3 (BO3)4 crystals as well as Er

3+:LiYF4 crystal [37]. In the latter case, the
excited-state absorption (ESA) spectra have also been calculated with rather good
results by using data from ground state absorption measurements.

5.4 Spectroscopic Parameter Calculation of Rare Earth
Ion in Crystal

Let us discuss a two energy level system in a closed cavity. Its low level has N1

population, g1 degeneracy with energy E1 and its high level has N2 population, g2
degeneracy with energy E2. According to Boltzmann distribution law, we have

N2

N1
¼ g2

g1
exp �E2 � E1

kBT

� �
ð5:49Þ

When this system interacts with a radiation field having frequency satisfying
x ¼ ðE2 � E1Þ=�h, the electrons in the high level have spontaneous and stimulated
emission and those in the low level have stimulated absorption. The up and down
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transitions will be finally in equilibrium. From the earlier discussion, it can be seen
that the probabilities of stimulated emission and absorption are proportional to the
energy density of the radiation field (it can be written as Bijd(x)), but the sponta-
neous emission probability is independent of the radiation field. Hence one has the
following relation

dðxÞ N1B12 � N2B21ð Þ ¼ N2A21 ð5:50Þ

By using (5.49) and (5.50), d(x) becomes

dðxÞ ¼ N2A21

N1B12 � N2B21ð Þ ¼
A21

B12
g1
g2
exp �hx=kBTð Þ � B21

ð5:51Þ

According to Plank formula, the energy density of the radiation field in a closed
cavity is

dðxÞ ¼ �hx3n3

p2c3
1

exp �hx=kBTð Þ � 1
ð5:52Þ

By comparing (5.51) with (5.52) and by using relation g1B12 = g2B21 similar to
(5.8), one obtains a relation between the Einstein coefficients

B21 ¼ p2c3

�hx3n3
A21 ¼ 4p2

3�h2n2g2

n2 þ 2
3

� �2X
n;m

l2n;1m
�� ��2 ð5:53aÞ

Obviously, the expression of B12 is

B12 ¼ 4p2

3�h2n2g1

n2 þ 2
3

� �2X
n;m

l1m;2n
�� ��2 ð5:53bÞ

By using (5.2), (5.30), (5.39) and the formula taking into account the average over
initial states and summation over final states as expressed by (5.7), at the same time
referring to formula (5.53a, 5.53b), Einstein coefficient B can be written as

BedðJi ! Jf Þ ¼ 4p2e2

3�h2n2 2Ji þ 1ð Þ
n2 þ 2

3

� �2

SedðJi ! Jf Þ ð5:54aÞ

Similarly, the corresponding relation for magnetic-dipole transition can be obtained
as follows

BmdðJi ! Jf Þ ¼ 4p2e2

3�h2 2Ji þ 1ð Þ S
mdðJi ! Jf Þ ð5:54bÞ
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It can also be shown that the spontaneous transition probabilities of
electric-dipole transition can be expressed as

AedðqÞðJi ! Jf Þ ¼ 64p4e2

3h 2Ji þ 1ð Þ�k3
nq n2q þ 2
� �2

9
SedðqÞðJi ! Jf Þ

¼ 8:047� 109ðcm=sÞ

�
nq n2q þ 2
� �2
2Jþ 1ð Þ�k3

X
k¼2;4;6

XðqÞ
k aSLJ½ 	f UðkÞ�� ���� �� aSLJ½ 	i
D E��� ���2

ð5:55Þ

The magnetic-dipole transition between multiplets in the same configuration is
allowed and different from the electric-dipole transition aroused by odd parity
perturbation which is independent of the structure of the host. Its difference in
different hosts resulted from the variation of free ion parameters produced by the
nephelauxetic effect, or the influence of J mixing effect can be neglected [38].
Therefore, the magnetic-dipole transition probability in different hosts can be
considered as the same. The oscillator strength in vacuum for magnetic-dipole
transition fmd can be found in the literature [38], then Smd can be calculated by the
following expression

Smd ¼ 3hð2Ji þ 1Þ�k
8p2mc

fmd ¼ 9:2189� 10�12ðcmÞ 2Ji þ 1ð Þ�kfmd ð5:56Þ

where Smd can also be expressed as

Smd ¼ h
4pmc

� �2

½aSLJ	h i Lþ 2Sk k½aSLJ	f
E��� ���2 ð5:57Þ

Smd in (5.57) is the result of summation over crystal field energy levels of the
multiplet and so is independent of the wave functions of crystal field energy levels.
If one discusses the transition between two crystal field energy levels, then the line
strength will be dependent on the wave functions of crystal field energy levels and
so is dependent on the point group symmetry of the ions in the host. Its transition
selection rule is described in Chap. 4. The transition rate of spontaneous emission
can be expressed as

Amd Ji ! Jf
� � ¼ 8p2e2n2

mc�k2
fmd Ji ! Jf
� � ¼ 64p4e2

3hð2Ji þ 1Þ�k3 n
3Smd

¼ 7:242� 1010ðcm=sÞ

� n2

ð2Jþ 1Þ�k3
X

½aSL	i½aSL	j
C ½aSL	i
� �

C ½aSL	j
� �

½aSLJ	h f Lþ 2Sk k½aSLJ	f
E��� ���2

ð5:58Þ
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The square of matrix elements in the above equation can be calculated as
follows:
When Jf = Ji − 1

½aSLJ	h i Lþ 2Sk k½aSLJ	f
E��� ���2

¼ d aiaf
� �

d SiSf
� �

d LiLf
� � Si þ Li þ 1ð Þ2�J2i

h i
J2i � Li � Sið Þ2
h i

4Ji

8<
:

9=
;

1=2

when Jf = Ji= J

½aSL	J Lþ 2Sk k½a0S0L0	J 0h ij j ¼ dða; a0ÞdðS; S0ÞdðL; L0Þ

� ð2J þ 1Þ
4JðJþ 1Þ
� �1=2

� 3JðJþ 1Þþ SðSþ 1Þ � LðLþ 1Þ½ 	

aSLJ½ 	h i Lþ 2Sk k aSLJ½ 	f
E��� ���2 ¼ dðaiaf ÞdðSiSf ÞdðLiLf Þ

� ð2Ji þ 1Þ
4JiðJi þ 1Þ
� �

� 3JiðJi þ 1Þþ SiðSi þ 1Þ � LiðLi þ 1Þ½ 	

when Jf= Ji+ 1

½aSLJ	h i Lþ 2Sk k½aSLJ	f
E��� ���2

¼ dðaiaf ÞdðSiSf ÞdðLiLf Þ
ðSi þ Li þ 1Þ2 � ðJi þ 1Þ2
h i

ðJi þ 1Þ2 � ðLi � SiÞ2
h i

4ðJi þ 1Þ

8<
:

9=
;

where C([aSL]i) and C([aSL]f) are the coefficients of the intermediate-coupling
wave functions for initial and final multiplets, respectively.

The total transition rates in case of both the electric-dipole and the
magnetic-dipole transitions are allowed will be

AðJi ! Jf Þ ¼ AedðJi ! Jf ÞþAmdðJi ! Jf Þ

For uniaxial crystals

AðJi ! Jf Þ ¼ 1
3
AðpÞðJi ! Jf Þþ 2

3
AðrÞðJi ! Jf Þ
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For biaxial crystals

AðJi ! Jf Þ ¼ 1
3
AðxÞðJi ! Jf Þþ 1

3
AðyÞðJi ! Jf Þþ 1

3
AðzÞðJi ! Jf Þ

The oscillator strength of electric-dipole transition will be expressed as

f edðqÞðJi ! Jf Þ ¼ 8p2mc
3hð2Ji þ 1Þ�k

n2 þ 2ð Þ2
9n

X
k¼2;4;6

XðqÞ
k ½aSLJ	f UðkÞ�� ���� ��½aSLJ	iD E��� ���2

¼ 1:205� 1010ðcm�1Þ � ðn2 þ 2Þ2
nð2Ji þ 1Þ�k

X
k¼2;4;6

XðqÞ
k ½aSLJ	f UðkÞ�� ���� ��½aSLJ	iD E��� ���2

ð5:59aÞ

The oscillator strength of magnetic-dipole transition will be expressed as

fmdðJi ! Jf Þ
¼ nh

6mcð2Ji þ 1Þ�k
�

X
½aSL	i½aSL	j

C ½aSL	i
� �

C ½aSL	j
� �

½aSLJ	h i Lþ 2Sk k½aSLJ	f
E��� ���2

¼ nfmd�ðJi ! Jf Þ ð5:59bÞ

The total oscillator strength is

f ðJ ! J 0Þ ¼ f edðJ ! J 0Þ þ fmdðJ ! J 0Þ

For uniaxial crystals

f ðJ ! J 0Þ ¼ 1
3
f ðpÞðJ ! J 0Þ þ 2

3
f ðrÞðJ ! J 0Þ

For biaxial crystals

f ðJ ! J 0Þ ¼ 1
3
f ðxÞðJ ! J 0Þ þ 1

3
f ðyÞðJ ! J 0Þ þ 1

3
f ðzÞðJ ! J 0Þ

Note that the above equations can be used to calculate absorption and emission
oscillator strengths but the degeneracy degree of initial states and the average wave
lengths should correspond to the absorption spectrum and emission spectrum,
respectively.

In uniaxial or biaxial crystals, the magnetic-dipole transition is also polarized. In
the J–O parameter calculation of different polarization direction, the
magnetic-dipole oscillator strength that should be subtracted is not the total oscil-
lator strength of magnetic-dipole transition with all the polarization directions as

5.4 Spectroscopic Parameter Calculation of Rare Earth Ion in Crystal 149



expressed in (5.59b). Taking uniaxial crystals as an example, it is necessary to
measure three different polarization spectra, the a, r, and p spectra, as mentioned in
Chap. 4. If fmd is the total oscillator strength of the magnetic-dipole transition in
vacuum, fmd expresses the total oscillator strength of magnetic-dipole transition
between two multiplets in the crystals, then fmd = nfmd. One has the following
relation

fmd ¼ 2
3
fmd
H?c þ

1
3
fmd
H==c

where fmd
H?c and fmd

H==c are the oscillator strengths of magnetic-dipole transition when

the magnetic field perpendicular and parallel to the c axis, respectively. From the r

spectrum measurement, the oscillator strength f ðrÞexp can be expressed as

f ðrÞexp ¼ f edðrÞ þ fmd
H==c

From the p spectrum measurement, the oscillator strength f ðpÞexp can be expressed as

f ðpÞexp ¼ f edðpÞ þ fmd
H?c

Similarly, in addition to the p polarized oscillator strength of electric-dipole tran-
sition, it includes the oscillator strength oscillator strength of magnetic-dipole
transition with magnetic field perpendicular to the optical axis. The physical
quantities of fmd

H?c and fmd
H==c cannot be obtained by calculation or direct measure-

ment. In order to obtain data of fed(r) and fed(p), the a spectrum should be measured,
because

f ðaÞexp ¼ f edðrÞ þ fmd
H?c

Therefore

f edðrÞ ¼ 2
3
f ðaÞexp þ

1
3
f ðrÞexp � fmd ð5:60aÞ

f edðpÞ ¼ f ðpÞexp þ
1
3

f ðrÞexp � f ðaÞexp

h i
� f md ð5:60bÞ

f ed ¼ 2
3
f edðrÞ þ 1

3
f edðpÞ ¼ 1

3
f ðaÞexp þ

1
3
f ðrÞexp þ

1
3
f ðpÞexp � fmd ð5:60cÞ

The oscillator strength expressed in the above equations should be used in the

calculation of J–O parameters. The absorption oscillator strength f ðqÞexpðabsÞ can be

calculated by using the following expression
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f ðqÞexp absð Þ ¼
mc2

pe2�k2absN1

Z
jðqÞðkÞdk ¼ 1:106� 1012 cm�1ð Þ

�k2absN1

Z
jðqÞðkÞdk ð5:61Þ

As shown by (5.43), the effective J–O parameters for biaxial and uniaxial crystals
should be written as

Xk ¼ 1
3

XðXÞ
k þXðYÞ

k þXðZÞ
k

� �
ð5:62aÞ

Xk ¼ 1
3
XðpÞ

k þ 2
3
XðrÞ

k ð5:62bÞ

The emission cross-section can be introduced as follows: the emission
cross-section r21 and the absorption cross-section r12 are related in a familiar way
as that of (5.8), and so the emission cross-section r21 has the following expression

redðqÞ21 ðxkÞ ¼ redðqÞ12 ðxkÞ g1g2
¼ 4p2xke2

3�hcð2J2 þ 1Þ
ðn2 þ 2Þ2

9nq

X
k¼2;4;6

XðqÞ
k ½aSLJ	1 UðkÞ�� ���� ��½aSLJ	2D E��� ���gðxkÞ

ð5:63aÞ

rmd
21 ðxkÞ ¼ rmd

12 ðxkÞ g1g2 ¼
4p2xke2n

3�hcð2J2 þ 1Þ S
mdðJ2 ! J1ÞgðxkÞ ð5:63bÞ

It should be noted that (5.63a, 5.63b) can only be used in absorption and emission
between two very sharp energy levels. In the solid laser materials, transitions related
to absorption and emission bands usually occur between two multiplets constituted
by sublevels Ei with degeneracy gi and sublevels Ej with degeneracy gj, respec-
tively. In the calculation of both absorption and emission cross-sections the fact that
the ions are distributed according to Boltzmann law in the related sublevels of
multiplets should be taken into account. In other words, the absorption and emis-
sion cross-sections should be averaged over different levels with average weight of
gje�ej=kBT and gie�ei=kBT for the high and low multiplet, respectively, and then the
cross-sections can be expressed as

remðxÞ ¼
P

ji gje
�ej=kBTrjiP

j gje
�ej=kBT

ð5:64aÞ

rabsðxÞ ¼
P

ji gie
�ei=kBTrijP

i gie
�ei=kBT

ð5:64bÞ
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The energies of the high and low multiplets, calculated from the bottom of each
multiplet, are denoted by ej and ei, respectively. If we change the zero point of energy
level to calculate from the ground state, then the following relation should be used

ej ¼ Ej � EZL; ei ¼ Ei; Ej � Ei ¼ �hx; ej � ei ¼ �hx� EZL

and then

X
ji

gje
�ej=kBTrji ¼

X
ji

gje
� ej�eið Þ=kBTe�eirji ¼ exp EZL � �hxð Þ=kBT½ 	

X
ji

gje
�ei=kBTrji

¼ exp EZL � �hxð Þ=kBT½ 	
X
ji

gie
�ei=kBTrij

The relation girij = gjrji has been used in the last step of the above equation. By
means of (5.64a) and (5.64b), the following expressions can be obtained.

remðxÞ ¼ rabsðxÞ ZlZu exp EZL � �hxð Þ=kBT½ 	 ð5:65aÞ

remðkÞ ¼ rabsðkÞ ZlZu exp EZL � hc=kð Þ=kBT½ 	 ð5:65bÞ

For anisotropic crystals, the absorption and emission cross-sections in q polar-
ization direction have the following relations

rðqÞemðxÞ ¼ rðqÞabsðxÞ
Zl
Zu

exp EZL � �hxð Þ=kBT½ 	 ð5:65cÞ

rðqÞemðkÞ ¼ rðqÞabsðkÞ
Zl
Zu

exp EZL � hc=kð Þ=kBT½ 	 ð5:65dÞ

The above absorption and emission cross-sections include the contributions from
both of the electric and magnetic transitions. Where Z ¼Pt gt exp �et=kBTð Þ, Zu
denotes the function for high multiplet with t = j and Zl denotes the function for low
one with t = i. The noreciprocity introduced by electron–phonon interaction [40]
has not been taken into account in the discussion.

In order to use (5.65a, 5.65b, 5.65c, 5.65d) to calculate emission cross-section, it
is necessary to have the data of crystal field energy levels of the high and low
multiplets, which can only be obtained from the low temperature spectra. However,
the Zl/Zu in (5.65a, 5.65b, 5.65c, 5.65d) and then emission cross-section can also be
calculated from the absorption spectrum and the radiative lifetime by using the
formula introduced as follows.
By (5.5a, 5.5b) and (5.14a, 5.14b), it can be shown that the electric and magnetic
transitions have the same relation as the probability of spontaneous dipole transition
with the emission cross-section. The related formulas for anisotropic crystal are as
follows
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rðqÞemðxÞ ¼
p2c2

x2n2
AðqÞ
21 gðxÞ rðqÞemðmÞ ¼

c2

8pm2n2
AðqÞ
21 gðmÞ rðqÞemðkÞ ¼

k4

8pn2c
AðqÞ
21 gðkÞ
ð5:66Þ

Integrated over x then

Z
rðqÞemðxÞx2dx ¼ p2c2

n2
AðqÞ
21

Two sides of (5.65c) multiplied by x2 and integrated over x, by using above
equation, it can be shown that

Zl=Zu ¼ p2c2exp �EZL=kBTð ÞAðqÞ
21

n2
R
r q�ð Þ
em ðxÞx2exp ��hx=kBTð Þdx

therefore

rðqÞem ¼ p2c2rðqÞabsðxÞAðqÞ
21

n2
R
r q�ð Þ
abs ðxÞx2exp ��hx=kBTð Þdx

ð5:67aÞ

Change the variable from x to k, then

rðqÞemðkÞ ¼
1

8pn2c
expð�hc=ðkkBTÞÞAðqÞ

21R
rðqÞabsðkÞk�4expð�hc=ðkkBTÞÞdk

rðqÞabsðkÞ ð5:67bÞ

In the calculation of the emission cross-section, (5.65a, 5.65b, 5.65c, 5.65d) and
(5.67a, 5.67b) are usually referred to as reciprocity method. The emission
cross-section can also be calculated directly by the data of fluorescence spectra, it is
called Fuchtbauer-Ladenburg equation, which will be introduced in the following.

The spontaneous transition probability from a high multiplet 2 to a low multiplet
1, with wavelength k, can be expressed as

AðqÞ
21 ðkÞ ¼

X
ji

fjA
ðqÞ
ji d Ej � Ei � hc

k

� �
ð5:68Þ

In the above equation, the indexes of j and i are used to denote the crystal field
energy levels of multiplets 2 and 1, respectively. fj is the Boltzmann distribution
factor of the ions in high multiplet 2. Substituting (5.68) into the third equation of
(5.66), one obtains
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rðqÞem�ðkÞ ¼
k4

8pn2qc

X
ji

fjA
ðqÞ
ji d Ej � Ei � hc

k

� �
gðkÞ ð5:69Þ

If the sensitivity of the fluorescence detective system is G and the ion number of
the high multiplet is Nu, then the total detected fluorescence intensity polarized in
q direction will be

IðqÞðkÞ ¼ GNu

X
ji

fjA
ðqÞ
ji d Ej � Ei � hc

k

� �
gðkÞ � hc

k
ð5:70Þ

The total photon number in the spectrum polarized in q direction can be expressed
as

1
hc

�
Z

spectrum
2 ! 1

kIðqÞðkÞdk ¼ GNuA
ðqÞ
21

so that

GNu ¼
Z

spectrum
2 ! 1

kIðkÞdk=hcAðqÞ
21 ð5:71Þ

By substituting (5.71) into (5.70) and comparing with (5.69), one can obtain the
following expression referred to as Fuchtbauer-Ladenburg (F-L) equation finally.

rðqÞemðkÞ ¼
k5AðqÞ

21 I
ðq�ÞðkÞ

8pn2qc
R

spectrum
2 ! 1

kIðq�ÞðkÞdk ð5:72Þ

If the variable is chosen to be the frequency, then the corresponding expression is

rðqÞemðmÞ ¼
c2AðqÞ

21 IqðmÞ
8pn2qm3

R
spectrum
2 ! 1

IqðmÞ
m dm

ð5:73Þ
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For the cubic crystals and the glasses, the emission cross-section of active ions
can be calculated by the following formulas using fluorescence lifetime sf,
fluorescence branching ratio b, and fluorescence quantum efficiency η

remðkÞ ¼ bgk5IðkÞ
8pn2csf

R
spectrum
2!1

kIðkÞdk ; remðmÞ ¼ bgc2IðmÞ
8pn2sf m3

R
spectrum
2!1

IðmÞ
m dm

These expressions are the same as those introduced by Aull [40] but without the
Boltzmann distribution factor fj appearing in the denominators. It should be noted
that these expressions are based on the supposition that the sensitivity of the
detection is the same for the whole fluorescence spectrum of the transition between
the two multiplets. It is also useful to mention the fact that in order to measure the
fluorescence lifetime accurately, it is necessary to eliminate the effect of radiation
trapping, especially for the three-level system or quasi-three-level system like that
of Yb3+ ions, in which this effect is more significant [41]. In these cases in order to
reduce the error of fluorescence lifetime measurement, it is usual to use powder
sample with the grain diameter about 100 lm immersing in a liquid having
refractive index near that of the sample. In this way, the internal reflection of the
fluorescent light by the powder grains can be reduced so that the effect of radiation
trapping is partially eliminated.

The calculation of radiative lifetime for Yb3+ ions should be mentioned. For this
ion, it is impossible to use absorption spectral data to calculate J–O parameter and
then calculate transition probability. In this case, radiative lifetime is usually cal-
culated by emission cross-section obtained by means of F-L formula or reciprocity
method. By integrating both sides of the second equation of (5.66) over wave-
length, then for the transition from multiplet Ji to multiplet Jj, one has

AðqÞðJi ! JjÞ ¼ 8pn2c
�k4

Z
rðqÞJi!JjðkÞdk ð5:74Þ

The transition probabilities for uniaxial and biaxial crystals should be calculated
using the following formulas, respectively

AðJi ! Jf Þ ¼ 1
3
AðpÞðJi ! Jf Þþ 2

3
AðrÞðJi ! Jf Þ

AðJi ! Jf Þ ¼ 1
3
AðxÞðJi ! Jf Þþ 1

3
AðyÞðJi ! Jf Þþ 1

3
AðzÞðJi ! Jf Þ

Finally, the radiative lifetime sr and fluorescence branching ratio bij can be
calculated by the following expressions, respectively
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srðJiÞ ¼ 1P
Jj AðJi ! JjÞ ; bij ¼

AðJi ! JjÞP
Jj AðJi ! JjÞ ð5:75Þ

5.5 Hypersensitive Transitions

Just as pointed out earlier, the 4f electrons of rare earth ions are shielded by its
outside filled shell 5s25p6, so that the transition intensities between different energy
levels for trivalent rare earth ion are not much affected by its host. The dipole
transition intensity of a particular transition channel for a rare earth ion in different
hosts does not vary more than a factor of 2–3. However, a few transition channels
are very sensitive to the environment of rare earth ion; these are so-called hyper-
sensitive transition. All known hypersensitive transitions obey the selection rules of
DS = 0, |DL|� 2, |DJ|� 2. These selection rules are the same as those of
electric-quadrupole transition, but their intensity is several order magnitude larger
than that of electric-quadrupole transition; therefore, it is also called
pseudo-quadrupole transition. Hypersensitive transition channels of six rare earth
ions commonly used in laser materials are shown in Table 5.1. Among these, some
transitions do not obey the selection rule DS = 0 seemingly, however, their
intermediate-coupling wave function does include the component satisfying this
selection rule. For example, the intermediate-coupling wave function of 1G4 of the
Tm3+ ion includes 31.8% 3F4 wave function and 56.7% 3H4 wave function which
have the spin quantum number the same as that of the energy level 3H6.

Among these hypersensitive transition channels, the 3F4–
3H6 transition of Tm3+

ion is the channel for 2 lm laser which has important applications; the study on the
relation between its transition probability and the composition as well as the
structure of the hosts has important significance.

Regarding the hypersensitive transition mechanism, different authors have dif-
ferent opinions. Judd [42] considered that this transition is associated with large
value of U(2) matrix element. The line strength S of electric-dipole transition

Table 5.1 Hypersensitive transition channels of six rare earth ions commonly used in laser
materials

Ion Transition
channel

Wave number
(cm−1)

Ion Transition
channel

Wave number
(cm−1)

Pr3+ 3F2–
3H4 4950 Er3+ 4G11/2–

4I15/2 26400

Nd3+ 4G5/2–
4I9/2 17200 2H11/2–

4I15/2 19200

Ho3+ 5G6–
5I8 22150 Tm3+ 3F4–

3H6 5600
3H6–

5I8 27700 3H4–
3H6 12550

Dy3+ 6F11/2–
6H15/2 7550 1G4–

3H6 21050
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includes the reduced matrix element of unit operator U(k) as shown in (5.39) and the
expression of this matrix element can be seen in (2.52) as

f nSLJh j UðkÞ�� �� f nS0L0J 0j i ¼ ð�1ÞSþ L0 þ J þ k ð2Jþ 1Þð2J 0 þ 1Þ½ 	 J J 0 k

L0 L S

	 

f nSLh j UðkÞ�� �� f nS0L0j idSS0

where the d function and the triangle condition of 6-j symbol for k = 2 require that
DS = 0, |DL| � 2, and |DJ| � 2 should be satisfied. This is just the selection rules
of hypersensitive transition. Therefore, the hypersensitive transition not only
demands a large reduced matrix element of unit operator U(2) but also a large J–O
parameter X2. The contributions of odd crystal field and odd lattice vibration to the
J–O parameter Xk and Xk′ are expressed as [2]

Xk ¼ ð2kþ 1Þ
X
tp

Btp

�� ��2N2ðt; kÞð2tþ 1Þ�1;X0
k

¼ ð2kþ 1Þ
X
tp

nh jQ n0j ij j2qðnÞ @Btp

@Q

����
����
2

N2ðt; kÞð2tþ 1Þ�1

where Nðt; kÞ is a factor that depends only on the atomic parameters, Btp(t = 1, 3, 5)
is the odd parity crystal parameters and n and n′ are lattice vibration quantum
numbers of initial and final states, respectively, and q(n) is lattice vibration state
density. It can be shown that the expression of J–O parameter Xk includes the
following 3-j symbol as a factor

1 k t
q �p� q p

� �

Then by the triangle condition of 3-j symbol it can be shown that for X2(k = 2) 6¼0,
3
 t
 1 should be satisfied, that is the quantity of X2 is determined by the odd
crystal field parameters B1p and B3p. From the data of N(t, k) obtained by Krupke
[1] calculated using free ion wave function, it can be seen that in order to have X2

larger than X4 and X6, a large one-order crystal field component B1p is necessary.
The study of Krupke [1] has shown that X2 is mainly produced by the odd crystal
field potential, while for the X4 and X6, the contribution of odd vibrational modes
accounts for a large proportion. Therefore, it is reasonable to consider that the
one-order crystal field potential is the important micro-mechanism of hypersensitive
transition. The point group of crystal having crystal field component B1p is the same
as the situation of reduced matrix element U(0); that is the following ten point
groups: Cs, C1, C2, C3, C4, C6, C2v, C3v, C4v, and C6v. Thereafter many authors
proposed other mechanisms, among those like inhomogeneous dielectric model,
ligand-polarization model and covalence model, and so on. However, these models
cannot be unified to interpret hypersensitive transition phenomena in different
dielectrics. For example, according to ligand polarization model, [43] the hyper-
sensitive transition can occur when active ions occupy D3h point group position, but
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Krupke [1] showed that the rare earth ion in LaF3 crystal occupy D3h point group
position; its X2 value is much smaller than those of X4 and X6, while Nd

3+ in Y2O3

crystal occupy C2 position—one of symmetry positions having crystal field com-
ponent B1p; its

4G5/2 ! 4I9/2 transition intensity is 12 times that in LaF3 crystal.
Meanwhile for other non-hypersensitive transition channel, the transition intensity
of Nd3+:Y2O3 is only two times that of Nd3+:LaF3. It suggests that the hypersen-
sitive transition of Nd3+ ions does not occur in D3h point group position. Recently,
Russian authors [44–46] studied the Nd3+, Tm3+, Ho3+, and Dy3+ ions in YAG and
GGG garnet crystals in which the ions can only occupy D2 position and the
Ca3(NbGa)5O12 garnet crystal in which the ions can occupy C2, C2v, and C1

positions as well as the Y2O3 and KGd (WO4)2 crystals in which the ions occupy
C2 position. They measured the oscillator strength and calculated the J–O param-
eters of related hypersensitive transition channels. Their experimental results sup-
port the B1p crystal field component model.

The intensity of hypersensitive transition has obvious relationship with the bond
length and coordination number between the rare earth ion and their ligands [47].
The shorter the bond length and the higher the coordination number, the stronger is
the hypersensitive transition. For example, the intensities of hypersensitive transi-
tion for Nd3 in three oxide crystals vary according to the sequence of
YAG < YAP < Y2O3.
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Chapter 6
Phonon and Spectral Line

The lattice vibration has many effects on spectroscopic properties of active ions in
solids, including inducing of electric-dipole transition and vibronic-electronic
transition, broadening of spectral line, shifting of spectral line position, introducing
of non-radiative transition, and transforming of excited energy between ions.
Therefore, studying the interaction of electron with lattice vibration is one of the
most important problems in the physics of solid-state laser material. During the
discussion of this chapter, the conception of phonon by quantization of lattice
vibration will be introduced; the effects of phonon emission and absorption on the
spectral line shape, spectral linewidth, and spectral line shifting will be discussed.
In these discussions, the concentration of active ions is very low and the interaction
between different active ions can be neglected, and the interaction of electronic
states of active ions with the electronic band of the crystals is neglected too. The
non-radiative transition inside rare earth ions introduced by electron-phonon
interaction will be discussed in Chap. 8, while the phonon-assisted energy transfer
will be discussed in Chap. 9.

6.1 Quantization of Lattice Vibration—Phonon

Theoretically, the starting point for studying lattice vibration is to solve the
Schrödinger equation in quantum mechanics. Before the discussion, one important
approximation should be assumed. It aims at the separation of the movement of
electrons and the lattice vibration. As well known, the mass of the electron is much
less than that of the nucleus. Even for hydrogen atom, the mass of the electron is
only one part of 1840 of that of the nucleus. From classical point of view, the
movement of atoms (ions) is much slower than that of the electrons. Therefore, in
the same period of time, the ions have just moved for a very short distance, while
the electrons have moved around the nucleus for many circles. It is reasonable to
solve the problem of the electronic movement in fixed positions of the ions and then
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solve the problem of the lattice vibration in some kinds of average electronic field.
This is referred to as the adiabatic approximation. By the formulas of classical and
quantum mechanics, before taking into account the electron–lattice interaction, the
total energy of a system of n electrons with mass me and N lattice ions with mass ma

is [1]

E ¼ m
2

Xn
i¼1

_r2i þ
1
2

XN
a¼1

ma
_R
2
a þ

1
2

X
i6¼j

X
j

e2

ri � rj
�� ��þ 1

2

X
a 6¼b

X
b

e2ZaZb
Ra � Rb

�� �� ð6:1Þ

Changing the classical variables into quantum mechanics operators, the partial
differential operators Δi and Δa are expressed as

Di ¼ @2

@xi
þ @2

@yi
þ @2

@zi
;Da ¼ @2

@Xa
þ @2

@Ya
þ @2

@Za
ð6:2Þ

The last two terms in (6.1) are interaction potential usually denoted by V(r, R)

Vðr;RÞ ¼ 1
2

X
i6¼j

X
j

e2

ri � rj
�� ��þ 1

2

X
a 6¼b

X
b

e2ZaZb
Ra � Rb

�� �� ð6:3Þ

By using operator expression of (6.2) and potential expression of (6.3), the
Hamiltonian of the system will be

H ¼ � �h2

2me

X
i

Di � �h2

2

X
a

Da

ma
þV r;Rð Þ

and then the Schrödinger equation is expressed as

� �h2

2me

X
i

DiW r;Rð Þ � �h2

2

X
a

DaW r;Rð Þ
ma

þV r;Rð ÞW r;Rð Þ ¼ EW r;Rð Þ ð6:4Þ

In adiabatic approximation, the movement of electron and the lattice system can
be dealt with as two independent systems (their interaction will be introduced later).
The zero-order wave function can be written as

W r;Rð Þ ¼ U r;Rð Þu Rð Þ ð6:5Þ

where U(r, R) is an electronic wave function depending on R (the coordinate of the
lattice ions) as a parameter and u(R) is lattice wave function. Substituting (6.5) into
(6.4) and neglecting the dependency of the electronic wave function on the lattice
coordinates, that is, the following so-called non-adiabatic term
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� �h2
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ma

u Rð ÞDaU r;Rð Þþ 2rau Rð ÞraU r;Rð Þ½ � ð6:6Þ

then the equation becomes
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ma
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DiU r;Rð ÞþV r;Rð ÞU r;Rð Þu Rð Þ ¼ W Rð ÞU r;Rð Þu Rð Þ

That is

� �h2

2me

X
i

DiU r;Rð ÞþV r;Rð ÞU r;Rð Þ ¼ W Rð ÞU r;Rð Þ ð6:7Þ

Equation (6.7) is in fact an electronic equation. In this way, the separation
between electronic coordinates and those of the lattice ions is done. The related
equation for the lattice ions is

� �h2

2

X
a

Dau Rð Þ
ma

þW Rð Þu Rð Þ ¼ Eu Rð Þ ð6:8Þ

In the following, (6.8) will be solved when the lattice ions have only a small
vibration around their equilibrium positions. In this discussion, the coordinates of
the lattice ions should be labeled clearly. For example, the unit cell of the lattice ion
is numbered by n, and the class of the ion in the cell is numbered by a (note that the
meaning of n and a are different from those in (6.1)). The lattice potential can be
expanded as a Taylor series near the equilibrium position. Except for the zero-order
term, which is independent of the coordinates of the displacement, the first-order
term representing the force subject by the lattice points is equal to zero in the
equilibrium. If the terms higher than the second order are temporarily neglected,
then the potential can be expressed as

W Rð Þ ¼ 1
2

X
nai
n0a0i0

@2W
@Rnai@Rn0a0i0

����
Rð0Þ

Rnai � Rnai 0ð Þ½ � Rn0a0i0 � Rn0a0i0 0ð Þ½ �

¼ 1
2

P
nai
n0a0i0

fii0 na; n0a0ð Þui nað Þui0 n0a0ð Þ
ð6:9Þ
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where the second-order derivative should adopt the value at the equilibrium posi-
tion. fii′(na, n′a′) refers to the force constant and is a real number. Their symmetric
properties can be seen from the definition.

fii0 na; n
0a0ð Þ ¼ fi0i n

0a0; nað Þ

where i denotes the coordinate components i = 1, 2, 3. The Hamiltonian of the
lattice system can be written as a sum of kinetic energy and potential energy

H ¼ 1
2

X
nai

ma _u
2
i nað Þþ 1

2

X
nai
n0a0i0

fii0 na; n
0a0ð Þui nað Þui0 n0a0ð Þ ð6:10Þ

The above formula has the same form as that of the Hamiltonian of the harmonic
oscillator 1

2mv
2 þ 1

2mx
2u2

� �
. It means that the lattice vibration consists of a series

of harmonic oscillators. In the following, the method of second quantization is used
to describe the lattice vibration.

In the Hamiltonian (6.10), the second term on the right-hand side is the potential of
lattice system obviously. Then the motion equation of the lattice can be written as

Ma€ui nað Þ ¼ � @W
@ui nað Þ ¼ �

X
n0a0j0

fii0 na; n
0a0ð Þui0 n0a0ð Þ ð6:11Þ

The solution of this equation can be written as follows, because the lattice vibration
is periodicity in time. Its displacement can be expressed as

ui nað Þ ¼ 1ffiffiffiffiffiffi
ma

p qi nað Þ exp �ixtð Þ ð6:12Þ

Substituting the above formula into (6.11), then

x2qi nað Þ ¼
X
n0a0i0

Dii0 na; n0a0ð Þqi0 n0a0ð Þ ð6:13Þ

where

Dii0 na; n0a0ð Þ ¼ fii0 na; n0a0ð Þffiffiffiffiffiffiffiffiffiffiffiffi
mama0

p

If the crystal has N unit cells and each cell has r atoms, then (6.13) is a
simultaneous equation with 3rN dimensions and there are 3rN solutions of x2
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(therefore have 3rN normal vibrational modes). By using the translation symmetry
of the lattice, the function of q(na) can be written as

qi nað Þ ¼ si að Þ exp ik � Rnð Þ ð6:14Þ

where k is a reciprocal vector. Equation (6.13) then becomes

x2si að Þ ¼
X
a0i0

X
n0�n

fii0 n0 � n; aa0ð Þffiffiffiffiffiffiffiffiffiffiffiffi
mama0

p exp ik � Rn � Rnð Þ½ �
( )

si0 a
0ð Þ ð6:15Þ

The translation symmetry has been used to write down (6.15). In this case,
fii′(na, n′a′) depends only on the relative position of the cell, that is fii′(na, n′a′) =
fii′(n′−n,aa′). If Dii′(k,aa′) is used to represent the quantities inside the curly bracket
in (6.15), then

x2si að Þ ¼
X
a0i0

Dii0 k; aa0ð Þsi0 a0ð Þ ð6:16Þ

Equation (6.16) is a 3r-dimensional simultaneous equation. It has 3r solutions for
each k vector

x � xi kð Þ ði ¼ 1; 2; . . .; 3rÞ

The number of k vectors is the cell number N of the crystal and so the number of
total vibration mode will be 3Nr. It can be shown that because of the translation
symmetry of the crystal, these 3Nr modes are N-fold degeneracy. Every frequency
xi has a corresponding si which can be normalized to become ei(k,a) and simply
expressed as

si að Þ ¼ ei k; að Þ ð6:17Þ

The basic characteristics of the lattice vibration are obtained by using a model
with two kinds of ions in a cell, which can be found in many textbooks in solid-state
physics (e.g. [2]). For the sake of brevity, the details will not be introduced while
the main results will be mentioned. When there are two kinds of ions in the cell
(r = 2), the lattice system has three acoustic modes and three optical modes. The
character of the acoustic mode is that two kinds of ions vibrate in the same
direction, while for the optical mode, the vibration directions of two ions with
opposite sign of electric charge are opposite. The later vibrational mode will pro-
duce a net electric-dipole moment and so can interact with radiation field. In general
cases, there are three acoustic modes and 3r–3 optical modes.

The displacement of the lattice ions can be expressed by (6.12), (6.14), and
(6.17) as a linear combination of the displacements of all the harmonic vibrational
modes [3]
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unai tð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
Nma

p
X
jk

Qj k; tð Þe jð Þ
i k; að Þexp ik � Rnð Þ ð6:18Þ

where the time dependency of the displacement has been put into the combination
coefficients Qj(k,t), which are the so-called normal coordinates. It can be seen by
the free electron theory that 1ffiffiffi

N
p exp ik � Rnð Þ is the wave function of free electron in

the lattice and satisfies the following orthogonal relation [1]:

X
n

exp i k� k0ð Þ � Rn½ � ¼ Ndk�k0;Km
ð6:19Þ

where Km is the period vector in k space. The basis vectors can be chosen to make
the solution ei(k,a) of (6.16) to satisfy the following relation

X
ai

e jð Þ
i k; að Þe j0ð Þ�

i k; að Þ ¼ djj0 ð6:20Þ

Owing to the fact that the displacement unai(t) of the lattice ions must be a real
number, then by (6.18), one has

e jð Þ�
i k; að Þ ¼ e jð Þ

i �k; að Þ;Q�
j k; tð Þ ¼ Qj �k; tð Þ

Substituting (6.18) into (6.10) and using (6.15) and (6.19), the Hamiltonian of the
system can be expressed as

H ¼ 1
2

X
jk

_Q�
j k; tð Þ _Qj k; tð Þþx2

j kð ÞQ�
j k; tð ÞQj k; tð Þ

h i
ð6:21Þ

Then the Lagrange function becomes

L ¼ 1
2

X
jk

_Q�
j k; tð Þ _Qj k; tð Þ � x2

j kð ÞQ�
j k; tð ÞQj k; tð Þ

h i

Obviously, the normal momentum Pj(k, t) which is conjugated to normal coordinate
Qj(k, t) will be

Pj k; tð Þ ¼ @L

@ _Q�
j k; tð Þ ¼

_Qj k; tð Þ;P�
j k; tð Þ ¼ @L

@ _Qj k; tð Þ ¼
_Q�
j k; tð Þ

then (6.21) can be written as
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H ¼ 1
2

X
jk

P�
j k; tð ÞPj k; tð Þþx2

j kð ÞQ�
j k; tð ÞQj k; tð Þ

h i
ð6:22Þ

Equation (6.22) is exactly the Hamiltonian of a set of harmonic oscillators. The
normal coordinates and normal momentum satisfy the commutative relation in
quantum mechanics

Qj k; tð Þ;Pj0 k0; tð Þ� � ¼ i�hdkk0djj0 Qj k; tð Þ;Qj0 k; tð Þ� � ¼ 0 Pj k; tð Þ;Pj0 k; tð Þ� � ¼ 0

ð6:23Þ

If one introduces the following transformation

Qj k; tð Þ ¼ �h
2xj kð Þ
� 	1=2

bj kð Þþ bþ
j �kð Þ

h i
;

Pj k; tð Þ ¼ �hxj kð Þ
2

� 	1=21
i

bj �kð Þ � bþ
j kð Þ

h i

that is

bþ
j kð Þ ¼ 2�hxj kð Þ� ��1=2

xj kð ÞQ�
j k; tð Þ � iPj k; tð Þ

h i
;

bj kð Þ ¼ 2�hxj kð Þ� ��1=2
xj kð ÞQj k; tð Þþ iP�

j k; tð Þ
h i

then the following commutative relations can be proofed by (6.23)

bj kð Þ; bj k0ð Þ� � ¼ bþ
j kð Þ; bþ

j kð Þ
h i

¼ 0; bj kð Þ; bþ
j kð Þ

h i
¼ dkk0djj0 ð6:24Þ

For example, the last commutative relation can be demonstrated as follows

bj kð Þ; bþ
j k0ð Þ

h i
¼ bj kð Þbþ

j k0ð Þ � bþ
j k0ð Þbj kð Þ

¼ 2�hxj kð Þ� ��1
xj kð ÞQj k; tð Þþ iP�

j k; tð Þ
h i

xj0 k0ð ÞQ�
j k0; tð Þ � iPj k0; tð Þ

h in o

� xj0 k0ð ÞQ�
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h i

xj kð ÞQj k; tð Þþ iP�
j k; tð Þ

h in o�
¼ 2�hxj kð Þ� ��1 �ixj kð Þ Qj k; tð Þ;Pj k0; tð Þ� �� ixj0 k0ð Þ Q�

j k; tð Þ;P�
j k0; tð Þ

h in o
¼ i

2�hxj kð Þ �ixj kð Þ � i�hdkk0djj0 � ixj0 k0ð Þ � i�hdkk0djj0
� � ¼ dkk0djj0

Equation (6.23) has been used in the above calculation. The Hamiltonian expressed
by (6.22) becomes
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H ¼
X
jk

�hxj kð Þ bþ
j kð Þbj kð Þþ 1
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� 
þ
X
jk

ix2
j kð Þ Qj k; tð ÞPj k; tð Þ � Qj �k; tð ÞPj �k; tð Þ� �

The summation is over all the k vectors. However, every k vector has a corre-
sponding vector of −k, and so the second term in the above equation is equal to
zero. Therefore

H ¼
X
jk

�hxj kð Þ bþ
j kð Þbj kð Þþ 1

2

� 
ð6:25Þ

By using quantum number (phonon number in this situation) representation
introduced first by Dirac [4], the ground state is denoted by |0> and the state having
n phonons is denoted by |n> , then it can be shown by (6.24) and (6.25) that

bj kð Þ nj kð Þ�� � ¼ ffiffiffiffiffiffiffiffiffiffi
nj kð Þ

q
nj kð Þ � 1
�� �

; bþ
j kð Þnj kð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj kð Þþ 1

q
nj kð Þþ 1
�� �

; bþ
j kð Þbj kð Þ nj kð Þ�� � ¼ nj kð Þ nj kð Þ�� � ð6:26Þ

Equation (6.26) shows that the effect of operator bj(k) is to eliminate one phonon
from the state and so it is called annihilation operator. The effect of bj

+(k) is to create
one phonon and so it is called creation operator. |nj(k) > is the eigenstate of
operator bj

+(k)bj(k) with eigenvalue nj(k) and bj
+(k)bj(k) is a phonon number

operator. The commutative relation (6.24) is satisfied by the creation operator and
the annihilation operator. Therefore, there is no any restriction on the phonon
number of any phonon mode. Hence phonon is a Boson in statistical physics. In this
way, (6.25) means that besides the zero energy, the lattice system consisted of 3Nr
harmonic oscillators and each has energy �hxi kð Þ. The total energy in a certain state
will be

Eðn1; n2; n3; . . .n3NrÞ ¼
X3Nr
i¼1

ni þ 1
2

� 	
�hxi ð6:27Þ

where the harmonic oscillator is labeled by the index i and the summation is over all
the 3Nr harmonic oscillators.

It should be pointed out that in the above discussion the terms higher than the
second order in the expansion of (6.9) have been neglected. This is the so-called
harmonic approximation. By this approximation, there is no interaction between
different normal modes. The terms higher than second order will introduce the
interaction between different normal modes and so are the mechanisms to reach
thermal equilibrium.

The probability to find the system in a state with energy E is proportional to
exp(−E/kBT) in thermal equilibrium (kB is Boltzmann constant). Naturally, the
average phonon number of certain phonon mode with frequency xi, can be
expressed as
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Therefore
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ð6:28Þ

The above formula is often used to discuss the spectroscopic problem related to
lattice vibration. For every phonon mode, one can obtain a formula for average
phonon number like (6.28).

Now turn to the problem of phonon state density. Similar to the photon state
density, they all involve the state number in k space. The periodicity of the lattice
requires that kx, ky, and kz should be integer multiples of 2p/L. An allowed k value
in the volume element (2p/L)3 of k space corresponds to a phonon state. The total
volume of the k space is 4pk3/3 and so the total state number is (L/2p)3 � 4pk3/3.
For the acoustic phonon k = x/m, where m is the velocity of sound, the total state
number will be Nm = Vx3/6p2m3, and so the state density can be expressed as

D xð Þ ¼ dNm

dx
¼ Vx2

2p2v3
ð6:29Þ

It has a similar dependent relation on the frequency and wave velocity as that for the
photon state density. However, they have a big difference in the orders of magni-
tude, because the velocity of the light is 3 � 1010 cm/s but that of the sound in the
solid is about 5 �105 cm/s and the frequency of the light is about 100–1000 times
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that of the sound. On the other hand, the energy of photon is many orders of
magnitude higher than that of the phonon. Therefore, at a comparable power density
level, the phonon number can be a dozen order of magnitude larger than the photon
number. For example, in a ruby crystal, when the power density of laser light
reaches 1 W/cm2, the photon number per cm3 is only 108 order of the magnitude.
However, for a solid with high hardness (Debye temperature about 1000 K), the
phonon number per cm3 can be 1023 orders of magnitude. This is the reason why
the lattice vibration has a strong effect on the spectroscopic properties of the solid
materials.

6.2 Phonon Emission and Absorption in the Optical
Transition

It can be seen from (6.7) that the potential energy of the lattice vibration is an
important potential energy term in the electron Schrödinger equation. On the other
hand, the phonon density is very high. Consequently, the local electronic states are
strongly affected by the lattice vibration. The lifetime of the electrons in their initial
state is much longer than the time to reach thermal equilibrium by their interaction
with phonons, so that the electron and phonon systems are in a thermal equilibrium
before the electron transition. At the moment of the transition to the final state, the
electron distribution of the initial and the final states has a considerable difference
but the configuration of the lattice has no substantial change, because compared to
the lattice vibration, the process of electron transition is a very rapid process.
Therefore, at the moment the electron transits to its final state, the electron system
and phonon system are not in the thermal equilibrium. In this circumstance, the
electron will release or absorb phonon to reach thermal equilibrium of
electron-phonon system; this is so called lattice relaxation. By the language of
quantum mechanics, the vibrational wave functions with different vibrational
quantum number of initial state and those of the final state are generally not
orthogonal, because the potential functions introduced to the vibrational
Schrödinger equation are different for these two states. In this case, the phonon
number will be changed in the transition process (phonon emission or absorption).
In the following discussion, we will use a single-frequency model supposing that
the phonon modes interacting with the electronic system all have the same fre-
quency and demonstrate by the method of Huang and Rhys [5].

Referring to the transition probability expressions in Chap. 4, taking into account
the summation over final states and average over initial states, if we are not con-
cerned about the dependence of the frequency and reflective index, then the fol-
lowing line shape function can be introduced
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F Eð Þ ¼ Av
i

X
f

Wf
� ��M Wij i�� ��2d E � Ef � Ei

� �� � ð6:30Þ

where for electric-dipole transition, M is the electric-dipole moment. In the case
studied, the electrons interact with the phonon system and act as one part of a
composite system, and so their wave functions are not as simple as those in Chap. 3,
but should be (6.5). The phonon wave functions u(R) are designated by phonon
number n. Therefore, the wave functions of the initial and the final states of the
composite system can be simply denoted by |in′ > and |fn> , respectively.
Summation over the final states and average over the initial states of (6.30) can then
be explicitly expressed as

F Eð Þ ¼ Av
n0

X
n

fnh jM in0j ij j2d E � Efn � Ein0
� �� � ð6:31Þ

where the energy eigenvalue Ekm (k = i or f, m = n or n′) is the sum of electron
energy and those of the phonons. In the single-frequency model

Ekm ¼ Ee
k þ

X
s

ms þ 1
2

� 	
�hx ð6:32Þ

where s is the label of different phonon modes having the same frequency x which
is used to replace the phonon labels of j and k. The electric-dipole moment M is a
function of electronic coordinates only, but the electronic wave functions U(r, R) is
not only a function of the electronic coordinates but also parameterized dependence
on the lattice coordinates. Condon approximation will be adopted to deal with this
problem, which assumes that the matrix element Uf r;Rð Þ� ��M Ui r;Rð Þj i ¼ Mfi is
independent of the lattice coordinates. In the harmonic approximation the interac-
tion between different phonons can be neglected and different phonon modes are
independent of each other. Therefore, the wave function for the phonon system is a
product of phonon wave functions of all the phonon modes. As a result, the line
shape function representing the intensity of a spectral line is

F Eð Þ ¼ Mfi

�� ��2Av
n0

X
n

Y
s

ufm

� ��uin0 i
� �2

d E � Efn � Ein
� �� � ð6:33Þ

In order to obtain the line shape function, the important point is to calculate the
overlap integral <ufn|uin′> . For this purpose, the effect of the electronic movement
on the coordinates of lattice vibration should be taken into account. It is necessary
to introduce the interaction Hamiltonian of the electrons with phonons as well as the
first-order approximation expression of the potential function W(R). The normal
coordinate Q is generally used to replace the coordinate R and a linear term of the
interaction potential of the electrons with phonons is assumed. If Nm = 3Nr rep-
resents the total numbers of the phonon mode, then the interaction Hamiltonian
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expanded to the linear term of normal coordinates Qs (i.e. the aforementioned
Qj(k,t)) will be

Hep ¼ 1ffiffiffiffiffiffi
Nm

p
X
s

vs rð ÞQs ð6:34Þ

where vs(r) is the first derivative of the potential with respect to the phonon
coordinate. The effect of this interaction is to add the following potential to the
system

Ui r;Qð Þh jHep Ui r;Qð Þj i ¼ 1ffiffiffiffiffiffi
Nm

p
X
s

Ui r;Qð Þh jvs Ui r;Qð Þj iQs

Let

Ui r;Qð Þh jvs Ui r;Qð Þj i=x2 � Dis

It should be noted that Dis is not the differentiate operator Di used previously and
its meaning can be clearly seen in (6.38). Since the interaction potential x2Qs

2/2 not
being calculated, the lattice vibrational potential produced by electronic movement
can be written as

Wi Qð Þ ¼ Wi 0ð Þþ 1
2

X
s

x2Q2
s þ

1ffiffiffiffiffiffi
Nm

p
X
s

x2DisQs ð6:35Þ

Substituting it into (6.8), the wave equation of the lattice vibration can be written as

Wi 0ð Þþ
X
s

1
2

��h
@2

@Q2
s
þx2Q2

s

� 	
þ 1ffiffiffiffiffiffi

Nm
p

X
s

x2DisQs

" #( )
uin Qð Þ ¼ Einuin Qð Þ

ð6:36Þ

After the following coordinates transformation

Qis ¼ Qs þ 1ffiffiffiffiffiffi
Nm

p Dis

a typical simple harmonic oscillator equation is obtained

Wi þ
X
s

1
2

��h
@2

@Q2
is
þx2Q2

is

� 	
s

� ( )
uin Qð Þ ¼ Einuin Qð Þ ð6:37Þ

where the zero-point energy is
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Wi ¼ Wi 0ð Þþ 1
Nm

X
s

1
2
x2D2

is

and the lattice vibrational wave functions can be written as

uin Qð Þ ¼
Y
s

uns Qs þ 1ffiffiffiffiffiffi
Nm

p Dis

� 	
ð6:38Þ

Equation (6.38) shows that due to the lattice relaxation, the coordinates of the
lattice vibrational wave function have different shifts for different electronic energy
levels, and the overlap integrals <ufn|uin′> are generally not equal to zero if n 6¼ n′.
For the sake of convenience, a factor of the product can be calculated at first.

Z
un0s Qs þ 1ffiffiffiffiffiffi

Nm
p Dis

� 	
uns Qs þ 1ffiffiffiffiffiffi

Nm
p Dfs

� 	
dQs ð6:39Þ

In order to do this calculation; it is better to shift the origin of the coordinates by
introducing

Qis ¼ Qs þ 1ffiffiffiffiffiffi
Nm

p Dis

Then

Qs þ 1ffiffiffiffiffiffi
Nm

p Dfs ¼ Qs þ 1ffiffiffiffiffiffi
Nm

p Dis þ 1ffiffiffiffiffiffi
Nm

p Dfs � 1ffiffiffiffiffiffi
Nm

p Dis ¼ Qis þ 1ffiffiffiffiffiffi
Nm

p Dsfi

where the symbol Δsfi = Δfs−Δis is introduced. To simplify the mathematics
expression, symbol η is used to denote 1ffiffiffi

N
p

m
Dsfi, at the same time, the index s is

omitted, then (6.39) becomesZ
un0 Qið Þun Qi þ gð ÞdQi ð6:40Þ

where un Qi þ gð Þ should be expanded into a Taylor series of η, then one has

Z
un0 Qið Þun Qið ÞdQi þ g

Z
un0 Qið Þ @

@Qi
un Qið ÞdQi

þ 1
2!
g2
Z

un0 Qið Þ @2

@Q2
i
un Qið ÞdQi þ � � �

þ 1
k!
gk
Z

un0 Qið Þ @k

@Qk
i

un Qið ÞdQi þ � � �

ð6:41Þ
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The next step in the calculation of (6.41) is to study the detailed expression of
the wave function of harmonic oscillators. By the formula of lattice dynamics [6],
we have

un Qið Þ ¼ x
p�h


 �1=4 1ffiffiffiffiffiffiffiffiffi
2nn!

p e�
1
2

xQ2
i

�h Hn

ffiffiffiffi
x
�h

r
Qi

� 	
ð6:42Þ

From the textbook of mathematical physics [7], the Hermitian polynomial
Hn n � ffiffiffi

x
�h

p
Qi

� �
can be obtained by the expansion of the generating function N(t, n)

as follows

N t; nð Þ ¼ exp 2tn� t2
� � ¼X1

n¼0

Hn nð Þ t
n

n!

It is obvious that from the above formula, one can obtain

@N
@n

¼ 2tN;
@N
@t

¼ �2 t � nð ÞN

Substituting the expanded formula of N (t, n) into above equations and comparing
the coefficients of the same tn/n! terms, the following useful recursion formulas are
obtained

H0
n nð Þ ¼ 2nHn�1 nð Þ; nHn nð Þ ¼ 1

2
Hnþ 1 nð Þþ nHn�1 nð Þ ð6:43Þ

The expression of the first derivative of phonon wave function is easily obtained
by (6.42) and (6.43)

@

@ �Qi
un Qið Þ ¼ x

2�h


 �1=2
nð Þ1=2un�1 Qið Þ � nþ 1ð Þ1=2unþ 1 Qið Þ

h i
ð6:44Þ

Differentiating both sides of the above equation with respect to Qi once again, it can
be seen that the second derivative of the phonon wave function includes the terms
of un−2(Qi) and un(Qi). Reasoning by analogy, @kun Qið Þ=@Qk

i includes the term of
un−k(Qi), and its coefficient is

x
2�h


 �k=2 n!
n� kð Þ!

� 1=2
ð6:45Þ

If k is an even number, it includes also the term of un(Qi). The general expression of
its coefficient is rather complicated. In the case of un(Qi) = u0(Qi), it can be shown
that the coefficient of the term of ηk in (6.41) is
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�1
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� 	k=2 x
2�h


 �k=2 1
k=2ð Þ!

� 	
ð6:46Þ

Let us consider the line shape factor at very low temperature. Obviously, in the
initial electronic state, the lattice should be in zero-point vibrational state, that is,
n′s = 0. When electrons transit from a high energy state to a low energy state (emit
the photons), the phonon number of all the modes can be increased. If the total
number of phonon increased is p, xr denotes the photon frequency and x expresses
the phonon frequency. The conservation of the energy requires that the variation of
the electronic energy should be equal to the photon energy plus the total energy of
the phonons, that is, DEfi ¼ �hxr þ p�hx or �hxr ¼ DEfi � p�hx. Similarly, in the
process of radiation absorption, �hxr ¼ DEfi þ p�hx.

Suppose p phonons generated in the transition process belong to any different
g modes which have phonon number increase of ns1, ns2,…, nsg, respectively, while
the phonon numbers of other modes have no any change. The relation
ns1 + ns2 + ��� + nsg = p should be satisfied (the maximum g is p, corresponding to
the special situation of each mode has only one phonon increase). In the case
studied, the initial state is n′s = 0, then only terms in (6.41) with k equal to or larger
than n are different from zero, because the derivative of wave function un(Qi) with
respect to Qi only consists of the terms with ul(Qi) (l > 0), when k < n. In this case,
ul(Qi) (l > 0) orthogonal to u0(Qi) leads the integral of related terms in (6.41) equal
to zero. Note in the expansion of (6.41), the high-order derivative terms include also
the wave functions of lower vibrational quantum number; therefore, for a certain
phonon number variation, the result of (6.41) consists of a series of terms with
power of η from lower to higher. Owing to the fact that Nm is a very large number
and so η is a very small quantity, therefore it is only necessary to consider the term
having lowest power of η, that is, the term with the power k equal to the phonon
number variation. Consequently,

Y
s

uns Qið Þ��uns Qi þ gsð Þ�������
�����
2

¼ 1
ns1!

xg21
2�h

� 	ns1

� 1
ns2!
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2�h
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2�h

 !nsg

�
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s

1� 1
2
xg2s
2�h

þ 1
2!

� 1
2
xg2s
2�h

� 	2

þ � � �
" #( )2

ð6:47Þ

where the first g factors are coming from terms in expansion expression (6.41) in
which the phonon number that increased for the first mode is ns1, second mode is
ns2, and so on. Of course, the total phonon number increasing is p. The expressions
of these g factors corresponding to n′s = 0 and k equal to ns1, ns2, …, nsg,
respectively, are calculated by using (6.41) and (6.44). Following these factors,
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there is the square of a continued product, which comes from the contributions of
the modes without phonon number variation in the transition. Each factor in this
continued product corresponds to the contribution from one mode. In (6.41), all the
terms with even powers of η (even-order derivative @kun Qið Þ=@Qk

i ) have a con-
tribution to this factor. Therefore, each factor is a summation of a series terms and
their coefficients are expressed by (6.46). The square of this continued product
becomes

Y
s

1� 1
2
xg2s
2�h

þ 1
2!

� 1
2
xg2s
2�h

� 	2

þ � � �
" #( )2

¼
Y
s

exp � 1
2
xg2s
2�h

� 	� 2

¼ exp �
X
s

xg2s
2�h

 !

Because the total mode number Nm is very large, to exclude g modes having
phonon number variation will not actually alter the summation of the xg2s=2�h over
all the vibrational modes, therefore the above summation should be over all the
vibrational modes s. On the other hand, the line shape factor, as shown in (6.33),
should be summed over all possible final states. To include all kinds of final state,
ns1, ns2, …, nsg must be selected to be any of the Nm modes. Hence, each of the
g factors in (6.47) should be summed over all the Nm modes. The order of these
factors is of no significance, and so the result should be divided by permutation
number of p!/ns1!ns2!…nsg! of the p units with the same ns1, ns2, …, nsg units
among them. It is obviously

Y
s
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X
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¼ exp �
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 ! X
s

xg2s=2�h

 !p

=p!

Therefore, the line shape function takes the following form

FðEÞ ¼ Mfi

�� ��2e�S Sp

p!

� 	
ð6:48Þ

where the Huang–Rhys factor S is defined as
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X
s

xD2
sfi

2�h
ð6:49Þ

Another method to obtain (6.48) is from the differential expression of Hermitian
polynomial

Hn nð Þ ¼ �1ð Þnen2 dn

dnn
e�n2

A differential expression of the harmonic oscillator wave function can be obtained
as

un
�Qið Þ ¼ x

p�h


 �1=4 �1ð Þnffiffiffiffiffiffiffiffiffi
2nn!

p e
n2

2
dn

dnn
e�n2

where n � ffiffiffi
x
�h

p
�Qi. Calculating the overlap integral using the above formula, the

(6.48) can be obtained by the way adopted by Di Bartolo [8]. It should be pointed
out that this single-mode and single-frequency approximation can be generalized to
multi-mode and single-frequency situation according to the method described
above.

From (6.49), one has

S�hx ¼
X
s

1
2
x2g2s ¼

X
s

1
2
x2DQ2

s ð6:50Þ

It means that S�hx corresponds to the total lattice relaxation energy generated by the
shift of the origin of vibrational coordinates during the electronic transition. It can
be seen by the curve of the line shape function versus the S factor that the peak of
the spectrum is at the point S = 1 when S factor of the system is equal to 1, and the
peak of the spectrum will be at the point S = k when S factor of the system is equal
to k. It shows that the electrons have the maximum transition probability when the
lattice relaxation energy is equal to the phonon energy absorbed or emitted in the
transition.

If it is not at very low temperature, there are also phonons excited in the initial
electronic states, then n′s 6¼ 0. In the electronic transition, the phonon number of
some vibrational modes is increased while those of the other modes can be
decreased. The line shape function in this case can be calculated by assuming that
there is only one phonon increased or decreased in each of the modes having
phonon number variation and those modes with several phonons variation can be
dealt with as each mode has one phonon variation. Obviously, when the initial
phonon number is n′s, by using (6.44) to calculate expansion (6.41), for those
modes with one phonon increased, by using (6.45) and let n = n′s + 1 and k = n′s,
it can be shown that each g factor xg2i =2�h i ¼ 1; 2; . . .; gð Þ in (6.47) should be
multiplied by n′s + 1; for those modes with one phonon decreased, n = n′s and
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k = n′s − 1, the corresponding factor xg2=2�h in (6.47) should be multiplied by n′s;
and for those modes without phonon number variation, that is n = n′s, calculated
by (6.41) and (6.44), it can be shown that each factor of xg2s=2�h in the continued
product of (6.47) should be multiplied by 2n′s + 1. If the total phonon number
increase is p, then the number of modes with one phonon increased is p + k and
those with one phonon decreased is k, while k can be any integer corresponding to
different distribution of the phonon number variation. The result, obviously, should
be summed over all possible k. Therefore, referring to (6.48), the line shape
function before statistical average takes the form

Mij

�� ��2e�S 2n0s þ 1ð ÞX
k

S n0s þ 1
� �� �pþ k

Sn0s
� �k

pþ kð Þ!k!

The initial phonon number should be statistical average according to Boltzmann
distribution law; that is the phonon number n′s should be multiplied by the factor
exp �ns�hx=kBTð ÞP
s

exp �ns�hx=kBTð Þ. As shown earlier, it corresponds to replace n′s by

�n ¼ 1= exp �hx=kBTð Þ � 1½ �, and so the emission line shape function at temperature
T is

FðE � DEfi þ p�hxÞ ¼ Mfi

�� ��2e�S 2�nþ 1ð ÞX
k

S �nþ 1ð Þ½ �pþ k S�nð Þk
pþ kð Þ!k! ð6:51Þ

The shape of this function obviously depends on temperature. Figure 6.1 is the
relation of the relative strength of the spectral line versus the number of phonon
emitted at T = 0 K. When the electron–phonon coupling is very weak (e.g. in the
case of trivalent rare earth ions in solid), the value of S is assumed to be nearly zero.
The spectral line is a single peak structure, like that shown in Fig. 6.1a. For stronger
electron–phonon coupling (for example in the case of trivalent iron group ions in
solid), the spectral line has a multi-peak structure, like that shown in Fig. 6.1b and it
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Fig. 6.1 The relation of the relative strength of the spectral line versus the number of phonon
emitted at low temperature limit: a S = 0; b S = 7
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is broadened by the electron–phonon coupling. Therefore, it is generally impossible
to observe the single spectral peaks corresponding to different phonon emitted or
absorbed, which can be seen at very low temperature, because the broadening effect
of the spectral line is enhanced rapidly as temperature rise. This will be discussed in
detail later.

At a higher temperature, the phonon number in initial electronic states is not
equal to zero and there are phonons emitted and absorbed in the electronic tran-
sition. The relation between the relative strength of the spectral line and the number
of phonon emitted and absorbed is shown in Fig. 6.2, for the case of S = 3 and
phonon energy �hx ¼ 250 cm�1 at room temperature T = 300 K. Negative phonon
number corresponds to phonon absorption.

Note that in Figs. 6.1 and 6.2, the curves are the relative line strength without
taking into account the effect of line broadening. Actually, the phonon always has a
frequency distribution over a certain frequency range. As that discussed by K.
Huang [9], if the contribution of the single phonon transition to line shape function
in frequency range d�x is e�Sr1 �xð Þd�x, then that for the two-phonon transition will
be

1
2!
e�Sr2 �xð Þd�x

where r2 �xð Þ is the following convolution integral

r2ð�xÞ ¼
Z

r1ð�x� xs1Þr1ðxs1Þdxs1

These relations can be generalized to multi-phonon situations. It can be shown
that the contribution of the multi-phonon transition to line shape function in fre-
quency range d �x is

1
n!
e�Srn �xð Þd�x

Therefore, the phonon side band corresponding to high-order phonon transition has
a wider bandwidth, while the line corresponding to p = 0 has a higher relative
intensity than that shown in Figs. 6.1 and 6.2. Generally, the part of the spectrum
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Fig. 6.2 The relation
between relative strength of
the spectral line and the
number of phonon emitted
and absorbed at room
temperature for the system
with Huang–Rhys factor
S = 3
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corresponding to smaller p has a higher relative intensity. However, for the system
with smaller S factor, all the peaks of the phonon side band still can be seen. On the
other hand, for many strong electron–phonon coupling systems, the spectral peaks
of the phonon side band corresponding to p > S cannot be seen even at a very low
temperature.

In Condon approximation, it can be shown that the integral area of spectral band,
consisting of the zero phonon line and all the phonon side bands, is independent of
the temperature [10]. The intensity of zero phonon line decreases, while the area of
the other part of the phonon side band increases with the rising of temperature. The
relation between the zero phonon line intensity and the temperature can be
expressed as IðTÞ ¼ I0 exp½�2SkBT=h�x� at high temperature. The larger the
Huang–Rhys factor S and the lower the average phonon energy �h�x, the more
rapidly weakened is the intensity of zero phonon line. At intermediate temperature
region, this relation is a complex function but the tendency is still: the intensity of
the zero phonon line decreases with the increase of temperature and this decrease is
more significant for the situation of larger S factor. In the case of laser material
activated by trivalent rare earth ions, the electron–phonon interaction is very weak
(S factor is very small) and so the intensity variation of the zero phonon line with
the temperature is not obvious. However, the transition metal ion in the laser
material have a much larger S factor and so the above variation is very significant
that one often fails to see the zero phonon line at room temperature.

The “barycenter” of a multi-phonon emission spectrum was discussed by K.
Huang [9] using the method of Fourier transformation and its result was

Ee ¼ Wfi � S�h�xs ð6:52Þ

For absorption spectrum, it can be shown that

Ea ¼ Wfi þ S�h�xs

where the average phonon energy �h�x can be expressed as

�h�xs ¼ 1
S

X
s

xs

2�h
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�D2
sfi

h i
�hxsð Þ ð6:53Þ

and

�Dsfi ¼ Dsfiffiffiffiffiffiffi
Nm

p

Obviously, (6.52) shows that the separation of the “barycenter” of the emission
spectrum from the difference of electronic energy levels is equal to the phonon
energy multiplied by S, the same as the situations in single-frequency mode
(Figs. 6.1 and 6.2). By using (6.52), the Stokes shift can be defined as
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ES ¼ 2S�h�xs ð6:54Þ

An approximation method of effective phonon model with phonon frequency
xeff (belonging to single-frequency approximation) is often used in the study of
spectroscopic properties of solid laser materials. By this approximation, it can be
shown that the square of full width at half maximum of the spectrum is [9]

W2 ¼ 8 ln 2ð ÞS �hxeff
� �2

coth �hxeff =2kBT
� � ð6:55Þ

The above formulas are very useful for the calculation of spectroscopic parameters.

6.3 Main Mechanisms of the Thermal Spectral Line
Broadening and Shifting

The spectral linewidth mentioned in the previous section is generated by the optical
transition accompanied by multi-phonon emission or absorption. This section will
discuss the thermal broadening and shifting of the zero phonon line. This broad-
ening and shifting will have a direct effect on the thermal stability and tuning range
of laser materials. The frequency of the spectral line is determined by the relative
position of the initial state and the final state. The thermal shifting and broadening
of the spectral line are the combined results of the thermal shifting and broadening
of the initial and final energy levels involved in the electronic transition. As tem-
perature increases, the lattice expansion, the spin orbit coupling constant, the Slater
parameter, and the static crystal field parameter also change, which are one of the
reasons for thermal broadening and shifting of the spectral line. On the other hand,
the interaction between electron and lattice vibration will also change the position
and width of the initial and final energy levels. Generally speaking, the broadening
and shifting caused by the previous action are relatively small. The peak position of
the spectral line shifts with the temperature, and the increase of its width with the
temperature are mainly caused by the interaction of the electron with phonon.
Defects and stresses in crystals also produce broadening and shifting of spectral
lines, but this mechanism is generally independent of temperature. Therefore, the
effect of lattice vibration on the thermal broadening and shifting of the spectral lines
should be studied in detail.

The effect of the electron–phonon interaction mechanism on the spectral line-
width can be summarized into two aspects: first, the electron transits to other energy
levels, thus shortens the lifetime of the electronic energy level, and broadens the
width of the electronic energy level; second, the phonon absorption and emission in
different crystal field energy levels in the same multiplet as well as the Raman
scattering in the same crystal field energy level will extend the width of the elec-
tronic energy level in the time period shorter than its lifetime. For the Raman
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scattering of phonon, the frequency of emitted phonon can be lower or higher than
the frequency of absorbed phonon.

The first kind of contribution to the linewidth can be calculated by

DE cm�1� � ¼ 5:3� 10�12

s secð Þ ð6:56Þ

where s is the lifetime of the electronic energy level. Equation (6.56) is obtained by
uncertainty relation DEDt ¼ �h and the energy is expressed as the unit of wave
number according to 1 erg = 5.035 � 1015 cm−1. This linewidth is called the
natural linewidth in spectroscopy. Actually, this kind of effect is not the main
contribution of the linewidth for zero phonon lines. One can see it clearly from the
example of the pure electronic transition line R1 of the trivalent chromium in ruby.
The lifetime of the excited state in this case is 3 ms at room temperature.
Calculating by (6.56), the linewidth will be 2 � 10−9 cm−1. However, the linewidth
observed was 10 cm−1 in fact.

In strong electron–phonon coupling system such as transition-metal ion system,
the normal vibrational frequencies for ground and excited states can be different due
to different force constants. This will result in spectral thermal line broadening. The
non-harmonic lattice vibrational also brings about the thermal broadening and sift
of the phonon side band. This information can refer to the literature [10].

This book mainly concerns the weak electron–phonon coupling system such as
trivalent rare earth ions in solid-state laser materials. In these materials only zero
phonon lines have observable intensity. From the above analysis it can be seen that
in these materials the main mechanism of energy level broadening is phonon
absorption and emission as well as the Raman scattering, which does not change the
lifetime of the electronic energy level. It is equivalent to that the electrons of the
initial and final states are oscillating with the frequency of single-phonon emission,
absorption, or Raman scattering. This oscillation corresponds to an additional
energy to the electronic system. The additional energy is equal to the probability of
above processes multiplied by the Planck constant h. As to the spectral line thermal
shifting, besides the crystal field weakened by lattice thermal expansion, the phonon
transition effect on the energy of electronic system, and the modulation of the
Coulomb interaction between electrons and the spin–orbital coupling all have their
contributions. Many theoretical models have been introduced to explain thermal
broadening and shifting of spectral line. However, the model proposed by
McCumber and Sturge [11] is highly regarded as an enormously influential work,
which is concise and clear, and its main conclusions can be applied quite generally
[12]. Therefore we will use this model in the discussion of line broadening and
shifting, but introduce the modification of mass difference of the host ions. It should
be pointed out that all the different models published so far include a series of
significant simplification of the real physical reality (e.g. to use long wavelength
approximation of the lattice vibration and the Debye distribution of phonon fre-
quency), and so can only be used to describe approximately the related phenomena.
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The method other than the perturbation theoretical can also be used to study
these problems, but the mathematical tool of many-body theory should be used
[13].

It should be pointed out that the broadening and shifting of the spectral line are
caused by the transitions between the neighboring crystal field levels with sepa-
ration from 100 to 102 cm−1. Generally, the energy of optical phonon has a mini-
mum order of magnitude of about 103 cm−1, while the energy of acoustic phonon
can be from 0 cm−1 to cut-off energy. Therefore, the same as the other authors, the
phonon used in the following discussion is the acoustic phonon.

6.4 The Contribution of Single-Phonon Absorption
(Emission) to the Spectral Linewidth

To calculate the transition probabilities of the single-phonon absorption and
emission, one should, at first, expand the energy of the electron–phonon interaction
as a series of the strain. The strain can be expressed as a linear combination of
phonon annihilation operator and creation operator as will be shown in the fol-
lowing. In an anisotropy crystal, the strain is a tensor obviously. However, in the
study of thermal vibrational effect on the spectral linewidth, the direction problem
can be neglected and so the displacement of the lattice can be expressed by a scalar
quantity u. It is the quantity in (6.18), which does not include the basic vector

e jð Þ
i k; að Þ (Many authors adopted this expression; for example, Di Bartolo [14].)

u Rað Þ ¼
X
k

�h
2Mxk

� 	1=2

eikRab kð Þþ e�ikRabþ kð Þ� �

where M = Nm is used to denote the mass of the crystal and for the acoustic mode
k ¼ xk=v. Therefore, one has

e � @u
@Ra

����
Ra ¼ 0

¼ i
X
k

�hxk

2Mv2

� 	1=2

b kð Þ � bþ kð Þ½ �

However, the assumption that all the ions in the host crystal have the same mass
is too simple and cannot account for the actual situation of the host crystal. In fact,
the laser materials are made up of more than two kinds of ions having different
mass. The mass difference in the host crystal should be taken into account as
pointed out by the authors [15]. Considering a crystal consisting of N molecules,
each is constituted of not only na ions of mass ma but also nb ions of mass mb. The
number of ions in a molecule is n = na + nb. The mass of each molecule is
m = (nama + nbmb). The total number of ions in the crystal is nN and the mass of
the crystal is M = N(nama+nbmb). By using the above expression of the strain, the
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expression of the strain for the case of all the host ions have the same mass of ma

and that for the case of all the host ions have the same mass of mb can be written as
follows

ea ¼ i
X
k

�hxk

2v2

� 	1=2 1ffiffiffiffiffiffiffiffiffiffiffiffi
nNma

p
� 	

b kð Þ � bþ kð Þ½ �; eb

¼ i
X
k

�hxk

2v2

� 	1=2 1ffiffiffiffiffiffiffiffiffiffiffiffi
nNmb

p
 !

b kð Þ � bþ kð Þ½ �

The average strain becomes

�e ¼ 1
n

naea þ nbeb
� � ¼ iD

X
k

�hxk

2Mv2

� 	1=2

b kð Þ � bþ kð Þ½ �

where

D ¼ m na
ffiffiffiffiffiffi
mb

p þ nb
ffiffiffiffiffiffi
ma

p� �2
n3mamb

" #1=2

If there are three kinds of host ion with different masses in one crystal, the factor
D can be derived by the same process as

D ¼ m na
ffiffiffiffiffiffiffiffiffiffiffi
mbmc

p þ nb
ffiffiffiffiffiffiffiffiffiffiffi
mamc

p þ nc
ffiffiffiffiffiffiffiffiffiffiffiffi
mamb

p� �2
n3mambmc

" #1=2

where n ¼ na þ nb þ nc, m ¼ nama þ nbmb þ ncmc. Generalize the above formula,
and it can be obtained that for the situation of four kinds of host ion, one has

D ¼ m na
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbmcmd

p þ nb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mamcmd

p þ nc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mambmd

p þ nd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mambmc

p� �2
n2mambmcmd

" #1=2

Expanding the energy of the electron–phonon interaction in terms of the local
strain, then

Ve�p ¼ V1�eþV2�e
2 þ � � � ð6:57Þ

The Hamiltonian of single-phonon transition expressed by linear term of e in (6.57)
will be
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He�sp ¼ iV1D
X
k

�hxk

2Mv2

� 	1=2

b kð Þ � bþ kð Þ½ � ð6:58Þ

According to Fermi golden rule, the transition probability of single-phonon
absorption or emission will be

Wsp ¼
Z

2p
�h

f jHe�sp ij
� ��� ��2q Ef ¼ Ei

� �
dEf ð6:59Þ

For the phonon absorption, the initial state is |i,nk> while the final state is
|f,nk−1 > . The matrix element for the transition from energy level i to energy level
f will be

fh jHe�sp ij i ¼ iD fh jV1 ij i
X
k

�hxk

2Mv2

� 	1=2 ffiffiffiffiffi
nk

p ð6:60Þ

The total transition probability of single-phonon absorption is

Wsp ¼ 2p
�h

Z X
Ee
f [Ee

i

fh jHe�sp ij i
�� ��2q Ef ¼ Ei

� �
dEf ð6:61Þ

The problem now is to determine the final state density q(Ef = Ei); it can be
written as

q Ef ¼ Ei
� � ¼ q Ef

� �
d Ef � Ei
� �

where Ef and Ei are the final and initial state energies of the electron–phonon
system. The state density of the final state is a product of the electronic state density
and the phonon state density, therefore one has

q Ef ¼ Ei
� �

dEf ¼ q Ee
f


 �
q Ep

f


 �
d Ee

f þEp
f


 �
� Ee

i þEp
i

� �h i
dEe

f dE
p
f

The system absorbs a phonon transition to the final state f, Ee
f iEe

i , meanwhile
Ep
f hEp

i , therefore

d Ee
f þEp

f


 �
� Ee

i þEp
i

� �h i
¼ 1

�h
d xe

fi � xk


 �

q Ep
f


 �
dEp

f ¼ q xkð Þd xkð Þ
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Because both Ee
f and Ee

i are discrete electronic levels and the transition is the
emission or absorption of a phonon having particular frequency x0, the energy
conservation law must be observed, so

q Ee
f


 �
dEe

f ¼ d xe
fi � x0


 �
dxe

fi

where xe
fi ¼ Ee

f � Ee
i


 �
=�h.

By using the above formula of phonon state density and the Debye approxi-
mation considering that the acoustic mode consisting of two transverse vibrational
mode of phonon velocity vt and one longitudinal vibrational mode of phonon
velocity vl, it can be obtained that

q xkð Þ ¼
Vx2

k
2p2

1
v3l
þ 2

v3t


 �
xk 	xD

0 xkixD

(
ð6:62Þ

where �hxD ¼ kBTD, TD is referred to as Debye temperature. Substituting these
results to (6.61) and integral over xe

fi and xk, considering that in the thermal
equilibrium, the phonon number is

�n ¼ 1
e�hxk=kBT � 1

¼ 1
e�hx0=kBT � 1

then the transition probability of one phonon absorption takes the form

Wa
sp ¼

X
f [ i

x0ð Þ3D2

2pq�h
1
v5l

þ 2
v5t

� 	
fh jV1 ij ij j2 1

e�hx0=kBT � 1
ð6:63Þ

where q = M/V. Similarly, it can be shown that for phonon emission

We
sp ¼

X
f hi

x0ð Þ3D2

2pq�h
1
v5l

þ 2
v5t

� 	
fh jV1 ij ij j2 1þ 1

e�hx0=kT � 1

� 	
ð6:64Þ

These kinds of phonon absorption and emission are reversible and it does not
change the lifetime of electronic energy levels. According to the analysis given in
the last section, a broadening of the initial state i resulting from the phonon
absorption and emission will be DEa

sp ¼ Wa
sph and DEe

sp ¼ We
sph, respectively.

In the energy unit of wave number cm−1, 1erg = 5.035 � 1015 cm−1, then
h ¼ 6:62620� 10�27erg � sec ¼ 3:3362917� 10�11cm�1 � sec ¼ 1

c, therefore

DEa
sp cm�1� � ¼X

f [ i

1
c

x0ð Þ3D2

2pq�h
1
v5l

þ 2
v5t

� 	
fh jV1 ij ij j2 1

e�hx0=kBT � 1
ð6:65Þ
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DEe
sp cm�1
� � ¼X

f\i

1
c

x0ð Þ3D2

2pq�h
1
v5l

þ 2
v5t

� 	
fh jV1 ij ij j2 1þ 1

e�hx0=kBT � 1

� 	
ð6:66Þ

where bfi is usually used in the literature to denote the product of the physical
quantities in the above formulas

bfi ¼
1
c

x0ð Þ3D2

2pq�h
1
v5l

þ 2
v5t

� 	
fh jV1 ij ij j2

Neglecting the difference between the velocity of transverse and longitude acoustic
waves, the above formula can be written as

bfi ¼
3
c

x0ð Þ3D2

2pq�hv5
fh jV1 ij ij j2 ð6:67Þ

Hence

DEsp cm�1� � ¼X
f [ i

bfi
1

e�hx0=kBT � 1
þ
X
f\i

bif
1

e�hx0=kBT � 1
þ
X
f\i

bif ð6:68Þ

where the first term is the contribution of the phonon absorption and the following
two terms are those of the phonon emission. At low temperature, two
1= e�hx0=kBT � 1
� �

factors in the summations of expression (6.68) are much smaller
than 1 and so the main contribution comes from the third term. In this case, when
the final state of emission or absorption is a higher crystal field level of the final
multiplet, there are more channels to carry out the phonon spontaneous emission,
that is the third term of (6.68) has a larger value. Therefore the width of low
temperature emission spectral line at longer wavelength is wider than that at shorter
wavelength, while the width of low temperature absorption spectral line at longer
wavelength is narrower than that at shorter wavelength. The estimation of the
magnitude of the thermal linewidth produced by this mechanism as well as the
comparison with those by other mechanisms will be given later.

6.5 The Contribution of Phonon Raman Scattering
to the Spectral Linewidth

The perturbation theory will be used to introduce the related formulas. Readers can
refer to the paper published by Skinner and Hsu to know the method of
non-perturbation theory [13]. Raman scattering is a second perturbation process. It
involves second-order perturbation of the first-order term of electron–phonon
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interaction Hamiltonian (see (6.58)) and first-order perturbation of the following
second-order term

He�dp ¼ �V2
�hD2

2Mv2
X
kl

ffiffiffiffiffiffiffiffiffiffi
xkxl

p
b kð Þ � bþ kð Þð Þ b lð Þ � bþ lð Þð Þ ð6:69Þ

Note that the mass difference factor D has been introduced in the above expression.
Similar to (6.59), the transition probability of the Raman scattering can be calcu-
lated by

WR ¼ 2p

�h2

Z
fh jHR ij ij j2q xf

� �
dxf ð6:70Þ

In the following discussion, the electronic wave functions are labeled by Greek
letter. Because the Raman scattering process of an electronic level is discussed, the
initial and final states are the different phonon states of the same electronic state
denoted by a.

According to second-order perturbation theory, the transition matrix element
appeared in (6.70) can be expressed as

fh jHR ij i ¼ a; nk � 1; . . .nl þ 1h jHR a; nk. . .nlj i

¼
X
c 6¼a

a; nk � 1; . . .nl þ 1h jHe�sp c; nk � 1. . .nlj i c; nk � 1. . .nlh jHe�sp a; nk. . .nlj i
Ea � ðEc � �hxkÞ

þ
X
c6¼a

a; nk � 1; . . .nl þ 1h jHe�sp c; nk; . . .nl þ 1j i c; nk; . . .nl þ 1h jHe�sp a; nk. . .nlj i
Ea � ðEc þ �hxlÞ

þ a; nk � 1; . . .nl þ 1h jHe�dp a; nk. . .nlj i
ð6:71Þ

Substituting the first-order term of the electron–phonon interaction Hamiltonian
(6.58) and that of the second-order term (6.70) into above equation, the following
can be obtained

fh jHR ij i ¼ �h
ffiffiffiffiffiffiffiffiffiffi
xkxl

p
D2

2Mv2
X
c 6¼a

ah jV1 cj ij j2
Ea � Ec � �hxk

� � nk � 1; nl þ 1h jbþ lð Þb kð Þ nk; nlj i
"(

þ ah jV1 cj ij j2
Ea � Ec þ �hxl

� � nk � 1; nl þ 1h jbþ lð Þb kð Þ nk; nlj i
#

þ ah jV2 aj i nk � 1; nl þ 1h j b kð Þbþ lð Þþ bþ lð Þb kð Þð Þ nk; nlj ig
ð6:72Þ

The next step is to substitute the matrix elements of phonon creation and
annihilation operators obtained previously. Ea � ðEc � �hxkÞ and Ea � ðEc þ �hxlÞ
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in the denominators of the terms in the above equation can be approximately
replaced by Ea−Ec because �hxl � �hxk 
 Ea � Ec

�� �� (in this way, the errors
introduced by those terms with Ea−Ec> 0 will partly be cancelled by those with
Ea−Ec< 0). Hence the following formula resulted

fh jHR ij i � �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkxlnk nl þ 1ð Þp

D2

Mv2
X
c 6¼a

ah jV1 cj ij j2
Ea � Ec

þ ah jV2 aj i
 !

¼ vm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkxlnk nl þ 1ð Þ

p ð6:73Þ

where

vm ¼ �hD2

Mv2
X
c 6¼a

ah jV1 cj ij j2
Ea � Ec

þ ah jV2 aj i
 !

ð6:74Þ

For the Raman scattering involving emit and absorb phonons with the same
frequency, the final state density can be expressed as

q xf
� �

dxf ¼ q xkð Þq xlð Þd xl � xkð Þdxldxk

Unlike the previous section, where only certain phonon energy can match the
interval of two electronic energy levels, the initial and final states of the Raman
scattering process are the same electronic energy level, and there is no limitation on
the energy of the scattering phonon. By using Debye approximation, the integral of
(6.70) should be from the phonon frequency 0 to xD. By means of the formula of
phonon state density (6.62), supposing the transverse acoustic mode and the lon-
gitude mode have the same velocity and using the thermal equilibrium phonon
number expression, (6.70) becomes

WR ¼ 2p

�h2
v2m

9V2

4p4v6

ZxD

0

x6
ke

�hxk=kBT

e�hxk=kBT � 1ð Þ2
dxk ð6:75Þ

After the variable transformation x ¼ �hxk=kBT , it can also be expressed as

WR ¼ 9V2

2p3�h2v6
v2m

kBTD
�h

� 	7 T
TD

� 	7 ZTD=T
0

x6ex

ex � 1ð Þ2 dx ð6:76Þ

Similar to the introduction of (6.65) and (6.66) from (6.63) and (6.64), the formula
of linewidth as a function of temperature can be deduced
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DE Tð Þ cm�1
� � ¼ �a

T
TD

� 	7 ZTD=T
0

x6ex

ex � 1ð Þ2 dx �
�aF T=TDð Þ ð6:77Þ

where

�a ¼ 1
c

9D4

2p3q2v10
kBTD
�h

� 	7 X
c 6¼a

ah jV1 cj ij j2
Ea � Ec

þ ah jV2 aj i
 !2

ð6:78Þ

where �a=T7
D is an adjustable parameter depending on the density of the crystal, the

phonon velocity, and the electron–phonon coupling strength. The value of this
parameter is proportional to D4; therefore the mass difference of the host ions has a
much obvious effect on the thermal line broadening than that in the case of phonon
emission and absorption mechanisms. The value of �a is generally less than
300 cm−1 for rare earth ions and is different for different ones. The value reaches
the maximum for Ce3+ ion and then decreases gradually down to Gd3+ ion reaching
the minimum, but it will increase again gradually up to Yb3+ ion reaching the
maximum. This variation tendency reflects the U shape variation tendency of
electron-phonon interaction strength. Ellens [16–18] measured the value of �a for
nine rare earth ions Ce3+, Pr3+, Nd3+, Eu3+, Gd3+, Tb3+, Er3+, Tm3+, and Yb3+ in
LiYF4 crystal. Their experimental results are in agreement with the above variation
tendency. Hellwege [19] thought that it is due to the fact that the total spin quantum
number S is the same for the rare earth ions in the corresponding positions of two
sides of Gd3+ ion but he did not explain how the symmetry tendency of S results in
the variation tendency of electron-phonon interaction strength. According to the
phenomenon of J–O parameters, X4 and X6 in Y2O3 crystal for the ions in the
lanthanum series are larger in the front and the end, while smaller in the middle.
Krupke [20] considered that the variation tendency of electron-phonon interaction
strength is the reflection of variation tendency of J–O parameters. However, in
crystals LiYF4, LaF3, and YAlO3 the variation tendency of J–O parameters is
different from that of Y2O3 crystal. Ellens and his coworkers [18] suggested the
following two mechanisms: the first is the lanthanide contraction. With the increase
of atomic number, the electronic radius of the 4f electron decreases, which weakens
the interaction with the surrounding coordination ions; and the second is the
parameter r related to the 4f electrons shielded or screened by the 5 s and
5p electrons, which decreases gradually from Ce3+ ion (r = 1.1) to Yb3+ ion
(r = 0.6). For the ions on the left of the Gd3+ ion, the reduction of the electronic
radius plays a major role on the variation tendency of electron-phonon interaction
strength, while the ions on the right of the Gd3+ ion, the decrease of the shielding
parameters plays a major role on the variation tendency. As a result, the U shape
variation tendency of electron-phonon interaction strength is created. Actually, one
can explain this variation tendency from another point of view. The average energy
level separation between the fn configuration and the 4fn−15d configuration is
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minimum for Ce3+ ion, then increases gradually and reaches its maximum at Gd3+

ion. For the right side of Gd3+ ions, this separation decreases gradually and reaches
its minimum at Yb3+ ion (it can be seen in Fig. 1.5). The variation of
4fn–4fn−15d energy level separation results in the variation of the proportion of the
component of 5d wave function, which has a stronger interaction with its ligands, in
the 4f wave function. The proportion of the component of 5d wave function can
certainly measure the strength of electron–phonon interaction. Therefore, the U shape
variation tendency of the strength of electron–phonon interaction is a reflection of the
U shape variation of 4fn–4fn−15d separation. For transition metal ions, the electron–
phonon interaction is much stronger and �a� 300 cm�1. Remember that its detailed
values are different for different crystals (see the examples in Sect. 6.7). Different
values of (T/TD)

7 multiplied by the integral value of (6.76) are shown in
Appendix G. As an example, at very low temperature when TD/T = 20 (TD= 500 K,
T = 25 K), F(T/TD) takes 5.72 � 10−7, even if �a ¼ 300 cm�1, ΔE only has
1.8 � 10−4 cm−1 while when TD/T = 1.7 (TD = 500 K, T = 300 K) F(T/TD) has a
value of 5.8 � 10−2 and ΔE will reach 17 cm−1 with the same �a value.

The contributions of the above-mentioned mechanisms change with temperature.
At very low temperature, the single-phonon emission and absorption have the major
contribution and that of Raman scattering can be neglected. At higher temperature,
the main contribution comes from Raman scattering, which covers the entire
phonon spectrum and is independent of the energy level separation of the light
transition.

It should be pointed out that the thermal line broadening produced by electron–
phonon interaction belongs to the so-called homogenous broadening. In a crystal
with considerable defects, the line broadening of the active ions is often dominated
by inhomogeneous broadening. In this kind of crystal, different ions can be in
different positions with different strains, different lattice distortions, and so different
crystal field potentials. The spectrum observed is actually a superposition of the
different spectra produced by the ions in different positions. Owing to the random
distributions of the strains, defects, and impurity ions, the inhomogeneous broad-
ening spectral line has Gaussian line shape with the following line shape function

gðxÞ ¼ 2
Dx

ln 2
p

� 	1=2

exp � 2 x� x0ð Þ
Dx

ffiffiffiffiffiffiffi
ln 2

p� 2( )
ð6:79Þ

However, each homogenous broadening spectral line has Lorentz line shape and its
line shape function is

gðxÞ ¼ 2
pDx

1

1þ x�x0
Dx=2


 �2 ð6:80Þ

In the general case, the spectral line has a Voigt line shape, which is a convo-
lution integral of the Lorentz lines with a Gaussian frequency distribution. When
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the width of the Gaussian distribution is zero (in case of an ideal crystal without
inhomogeneous), the line shape becomes Lorentz. On the other hand, when the
width of Lorentz line tends to zero, the spectral line takes the shape of Gaussian.
This is the line shape at very low temperature, in which the effect of lattice vibration
is very weak. At high temperature, the linewidth of the Lorentz components can be
much larger than that of the Gaussian in the composite Voigt line and so the integral
line shape is practically Lorentz. This is the reason why the spectral lines of the
active ions at room temperature in a reasonable perfect crystal that can be described
by Lorentz line shape. For the crystals including defects and impurity ions, based
on a theoretical model, Orth [21] obtained the result: when the density of defect
and/or impurity ion is low, the line shape of the spectral line is still Lorentz; while
the density of defect and/or impurity ion is high, the line shape is Gaussian.

6.6 Calculation of the Thermal Shifting of Spectral Lines

To discuss thermal shifting of the spectral lines, it is natural to think that the thermal
expansion is the main mechanism, because thermal expansion will weaken the
crystal field and shorten the energy level separations. Certainly, for the so-called
“soft crystal” having large thermal expansion coefficient, this mechanism has the
major contribution. However, it is not true for the “hard crystal” like YAG.
Actually, the calculation results according to the mechanism of thermal expansion
cannot account for the experimental data of thermal shifting, and even obtain a
negative result in some situations. Therefore, the electron–phonon interaction can
be considered as the major mechanism of the thermal shifting of spectral lines.

Many authors proposed a variety of different theoretical models to deal with this
problem, but as pointed out before, most of these models have not been universally
accepted. So we still use the McCumber and Sturg model [11] to calculate thermal
shifting of the spectral lines. In order to realize the relation between thermal shifting
of the spectral line and the temperature, it is enough to calculate the diagonal matrix
elements of electron-phonon interaction Hamiltonian by the general method, that is,
to calculate the increase of the electronic level energy generated by the
electron-phonon interaction. The electron–phonon interaction energy is expanded in
terms of the normal coordinates of lattice vibration to second-order term and
expressed as the sum of a single-phonon Hamiltonian He−sp and a double-phonon
Hamiltonian He−dp

He�p ¼ He�sp þHe�dp

where He−sp and He−dp have been introduced in (6.58) and (6.69).
To calculate the diagonal matrix elements in second-order perturbation

approximation, the double-phonon Hamiltonian (it is already a second-order
quantity) and the single-phonon Hamiltonian should be calculated to zero-order and
first-order terms, respectively, that is

192 6 Phonon and Spectral Line



dEi ¼
X
j

i He�sp
�� ��j� �

j He�sp
�� ��i� �

Ei � Ej
þ i He�dp

�� ��i� � ð6:81Þ

In the initial, intermediate, and final states, the electron–phonon wave functions of
the system are expressed as

ih j ¼ ah j nkh j; jh j ¼ bh j nk þ 1h j and ih j ¼ bh j nk � 1h j

where a and b are used to denote the electronic wave functions of the initial and
final states, respectively. By substituting (6.58) and (6.69) into (6.81), the following
expression can be obtained

dEi ¼ �hD2

2Mv2
X
b;k

xk
ah jV1 bj i bh jV1 aj i
Ea � Eb þ �hxk

� � nkh jbkbþ
k nkj i þ ah jV1 bj i bh jV1 aj i

Ea � Eb � �hxk
� � nkh jbþ

k bk nkj i
" #(

þ
X
k

xk ah jV2j j aj i nkh jbkbþ
k þ bþ

k bk nkj i
)

ð6:82Þ

By using matrix elements of creation and annihilation operators, it becomes

dEi ¼ �hD2

2Mv2
X
b;k

xk ah jV1 bj ij j2 nk þ 1
Ea � Eb þ �hxk

� � þ nk
Ea � Eb � �hxk

� �
" #(

þ
X
k

xk ah jV2 aj i 1þ 2nkð Þ
) ð6:83Þ

The terms independent of the temperature should be subtracted, because what we
are concerned is the thermal shifting of the spectral line. In this way, the shifting of
the energy level i should be

dEi ¼ �hD2

2Mv2
X
k

xknk
X
b6¼a

ah jV1 bj ij j2 1
Ea � Eb þ �hxk

� � þ 1
Ea � Eb � �hxk

� �
" #

þ 2 ah jV2 aj i
( )

ð6:84Þ

Two cases of Ei � Ej

�� ��� �hxD and Ei � Ej

�� ��	 �hxD will be analyzed separately
in the following.

For the case of Ei � Ej

�� ��� �hxD, (6.84) can be reduced to

dE0
i ¼ a

X
k

xknk ð6:85Þ
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where

a ¼ �hD2

Mv2
X
b 6¼a

ah jV1 bj ij j2
Ea � Eb

þ ah jV2 aj i
" #

ð6:86Þ

In thermal equilibrium, the averaged phonon number is 1= e�hxk=kBT � 1
� �

, and the
phonon density is qðxkÞ ¼ 3Vx2

k=2p
2m3. In this case, the summation in (6.85)

should be replaced by the following integral after using Debye model.

3V
2p2v3

ZxD

0

x3
kdxk

e�hxk=kBT � 1ð Þ ¼
3V

2p2v3
kBT
�h

� 	4 ZTD=T
0

x3

ex � 1
dx ð6:87Þ

The thermal shifting in the unit of wave number can be expressed as

dE cm�1� � ¼ a
T
TD

� 	4 ZTD=T
0

x3

ex � 1
dx ð6:88Þ

where a has the following relation with a expressed in (6.86) and �h ¼ 1=ð2pcÞ ,
then one has

a ¼ 3D2

4p3qv5c
kBTD
�h

� 	4 X
b 6¼a

ah jV1 bj ij j2
Ea � Eb

þ ah jV2 aj i
" #

ð6:89Þ

For the case of Ei � Ej

�� ��	 �hxD, the second-order term can be neglected, (6.84)
can be similarly written as

dEi ¼ �hD2

2Mv2
X
b6¼a

3V
2p2v3

ah jV1 bj ij j2P
ZxD

0

2 Ea � Eb

� �
x3

k

Ea � Eb
� �2� �hxkð Þ2
h i

e�hxk=kBT � 1ð Þ
dxk

¼ �hD2

Mv2
X
b6¼a

3V
2p2v3

ah jV1 bj ij j2 kBT
�h

� 	4 1

kTð Þ2 Ea � Eb
� �

P
ZTD=T
0

x3

ex � 1
1

Tab
�
T

� �2�x2
dx

¼
X
b 6¼a

3x3
abD

2

2p2qv5
ah jV1 bj ij j2 T

Tab

� 	2

P
ZTD=T
0

x3

ex � 1
1

Tab
�
T

� �2�x2
dx

ð6:90Þ

where Tab ¼ ðEa � EbÞ=kB, xab ¼ 2pðEa � EbÞ=h. P means the principal value of
the integral. By using a formula similar to (6.67), the above formula can be reduced
and expressed in the unit of wave number
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dEi cm�1
� � ¼X

b 6¼a

1
2p2c

� 	
bab

T
Tab

� 	2

P
ZTD=T
0

x3

ex � 1
� 1

Tab
�
T

� �2�x2
dx ð6:91Þ

bab ¼ 3x3
abD

2

2pq�hv5
ah jV1 bj ij j2

The above calculation does not calculate separately the thermal shifting of the
higher and the lower energy levels, it just finds the magnitude of the difference to
give the sign of the spectral shifting. We cannot predict whether the thermal spectral
line shifting is red or blue one. The experiments show that most of the thermal
spectral line shiftings are red one [22]. Therefore, the phenomena of the thermal
spectral line shifting should have a more comprehensive study. An important aspect
of the research on thermal shifting that should be mentioned is the thermal shifting
of the “barycenter” of the spectral terms induced by lattice vibration. The mecha-
nism of this “barycenter” shifting can be the modulation of the spin–orbital cou-
pling by lattice vibration mentioned by Kaminskii [22]. Another mechanism of
thermal shifting of the “barycenter” was proposed by the author [23]. The decrease
of the Coulomb interaction between electrons caused by the exchange of phonons
generates a thermal shifting of the “barycenter” of the spectral term and 2S+1L was
expressed as

GT
2Sþ 1L
� � ¼ g 2Sþ 1Lð ÞS2q

xq e�hxq=kBT � 1
� �

where g(2S+1L) denotes the average pair number of the electron satisfying phonon
exchange condition, xq is the frequency of the phonon and Sq is a parameter
measuring the electron–phonon interaction strength.

The values of T
TD


 �4 RTD=T
0

x3
ex�1 dx can be found in the Appendix G. For example,

when TD/T = 1.2 (TD = 500 K, T = 417 K), it is 1.724 � 10−1, and when TD/T
= 0.6 (TD = 500 K, T = 833 K), it is 4.405 � 10−1.

At the end of this section, it should be pointed out that the mass difference of
host ions certainly has important effects on the spectral line thermal broadening and
shifting. It can be seen from the fact that D2 appears as a factor of the parameter a
and D4 appears as a factor of the parameter �a. It should also be mentioned that the
thermal broadening and shifting of spectral lines are inversely proportional to v10

and v5, respectively, where v is the sound velocity of the crystal, owing to the fact
that sound velocity of the crystal is inversely proportional to the product of crystal
density q and compressibility j [24]. If the binding energy of crystal is almost the
same, the compressibility of homogeneous solid is increased with mass difference
of their ions [25]. It means the larger the D factor, the larger is the compressibility
j. On the other hand, the mass of anion usually is smaller than that of the cation so
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that the density of the materials with the same anion is increased with the D factor.
For example

Y3Al6O12: D2 = 1.35, q = 4.55 g/cm3; YAlO3: D2 = 1.44, q = 5.35 g/cm3;
Y3Ga6O12: D2 = 1.55, q = 5.83 g/cm3; Gd3Ga6O12: D2 = 1.86, q = 7.05/cm3;
Lu3Ga6O12: D

2 = 1.95, q = 7.79 g/cm3.
It demonstrates that the mass difference of the host ions affects the thermal
broadening and shifting of spectral lines not only directly through the D factor but
also indirectly through its variation of material density and compressibility.
Therefore, the larger mass difference factor D always corresponds to the wider
thermal broadening and larger shifting of the spectral lines. A detailed example will
be shown in Sect. 6.7.

6.7 Examples for the Calculation of Thermal Spectral
Line Broadening and Shifting

In order to have a perceptual knowledge about thermal broadening and shiftings of
the spectral lines, the study of phonon effects on the fluorescence lines of Nd3+ ions
in crystal Gd3Sc2Ga3O12 by Chen and Di Bartolo [26] will be introduced as an
example. We discuss only four spectral lines corresponding to the transitions from
crystal field energy level R1 (11,439 cm−1) and R2 (11,500 cm−1) of multiplet 4F3/2
to the lowest energy level Y1 (1983 cm−1) and the highest energy level Y6

(2432 cm−1) of multiplet 4I11/2 (Fig. 6.3). Other experimental data can be directly
referred to their paper [26].

On the thermal broadening of spectral lines, the total broadening of fluorescence
lines was written as a sum of the following terms [26]

R2 
4F3/2 R1 

4I11/2 Y6 

Y5 

Y4 

Y3 

Y2 

Y1 

Fig. 6.3 Energy levels of
4F3/2 and

4I11/2 multiplets of
Nd3+ ion
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DEi cm�1� � ¼ DEstrain
i þDEM

i þ
X
j\i

�bij þDEDT
i þDER

i

The first term DEi
strain is the broadening introduced by the defects and other

inhomogeneous in the crystals and is independent of the temperature. The second
term DEM

i is the broadening induced by multi-phonon emission and is essentially
independent of the temperature. The third term corresponds to the last term of
(6.68), which is the contribution of the spontaneous phonon emission and is also
independent of temperature. DEDT

i consisting of the first two terms in (6.68) can be
neglected at very low temperature. DER

i is the broadening introduced by phonon
Raman scattering. The major contribution to linewidth at low temperature comes
from phonon spontaneous emission, that is, the third term of (6.68).
At temperature of 78 K, the spectral line corresponding to R1 ! Y1 transition has
nearly a Lorentzian line shape (it shows that the crystal is rather perfect, and the
influence of defects is small) and has a linewidth of 2.49 cm−1 smaller than that of
any other spectral lines, because R1 and Y1 are the lowest levels at multiplets 4F3/2
and 4I11/2, respectively, and so there is no spontaneous phonon emission contri-
bution to the linewidth.

Fitting the experimental data of thermal line broadening to theoretical calculation
results by taking into account or neglecting the effect of DEDT

i , respectively, Chen
and Di Bartolo [26] found that the contribution of DEDT

i cannot be neglected at
temperature 78 K; otherwise the Debye temperature TD obtained will be different
from that obtained by the fitting of thermal line shifts. For the R1 ! Y1 emission
line, the phonon absorption Y1 ! Y2 and phonon absorption R1 ! R2 have
contributed to the thermal line broadening while for the R2 ! Y1 emission line, the
phonon absorption Y1 ! Y2 and phonon absorption R1 ! R2 as well as the
spontaneous phonon emission R2 ! R1 have contributed to the thermal line
broadening. Noting that bR1!R2 = bR2!R1, then the spectral line thermal broad-
ening of the transitions R1 ! Y1 and R2 ! Y1, except the linewidth contribution
of the spontaneous phonon emission R2 ! R1 for R2 ! Y1 emission line, can be
expressed as

DE cm�1� � ¼ DE0 þ bR1!R2

1
exp DER2!R1=kBTð Þ � 1

þ bY1!Y2

1
exp DEY2!Y1=kBTð Þ � 1

þ �a
T
TD

� 	7 ZTD=T
0

x6ex

ex � 1ð Þ2dx

The last term in the above equation is the contribution of Raman scattering, where �a
is also a fitting parameter like those of bY1!Y2, bR1!R2, ΔE0, and TD. The fitting
results are ΔE0 = 2.1 cm−1 for R1 ! Y1 emission line and ΔE0 = 2.5 cm−1 for
R2 ! Y1 emission line. The reason for this difference has been stated previously,
that is because the thermal line broadening of R2 ! Y1 emission line has more
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contribution bR2!R1 that comes from the phonon spontaneous emission and it
shows bR1!R2 = bR2!R1 = 0.4 cm−1. Other parameters fitted are: bY1!Y2 =
0.158 cm−1, �a ¼ 34 cm�1, TD = 500 K and bY1!Y2 = 0.288 cm−1, �a ¼ 49 cm�1,
TD= 500 K for R1 ! Y1 and R2 ! Y1 transitions, respectively (Fig. 6.4).

The effect of temperature on the position of the lines R1 ! Y1, R2 ! Y1,
R1 ! Y6, R2 ! Y6, and R1 ! Z5 (also known as X5, the highest energy level of
4I9/2) was also studied by Chen and Di Bartolo [26]. All the measured lines shifted
to the red (longer wavelength) except for the R1 ! Z5 line which shifted to the blue
(shorter wavelength) with the increase of temperature. According to (6.88), the
fitting parameters are: R1 ! Y1 and R2 ! Y1: a = −61 cm−1, TD = 600 K;
R1 ! Y6: a = −32 cm−1, TD = 760 K; R2 ! Y6: a = −26 cm−1, TD = 660 K.
The fitting curve for R1 ! Y1 transition is shown in Fig. 6.5.
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Fig. 6.4 The fitting results of
thermal broadening of
emission spectral lines for
transition R1 ! Y1 [26]
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The thermal spectral line broadening and shifting have nearly the same orders of
magnitude for the same rare earth ion in different materials or the different rare earth
ions in the same material. The following are some other data for comparison. The
fitting parameters for 1.23% Er3+: YAlO3 [27] are: �a ¼ 45 5 cm�1,
TD = 350 ± 30 K for thermal broadening; a = −10 ± 1 cm−1, TD = 300 ± 30 K
for thermal shifting. The data obtained have no substantial difference for different
doping concentration. The fitting parameters for 1% Nd3+: CaWO4 [28] are:
�a ¼ 70 cm�1  0:5%, TD = 200 K ± 0.5% for thermal broadening, and for
Nd3+:RbMnF3 [29] are: �a ¼ 76 12 cm�1, TD = 200 ± 20 K for thermal broad-
ening; a = −30 ± 6 cm−1, TD = 500 ± 40 K for thermal shifting. One of the
reasons for obtaining different Debye temperature for thermal broadening and
thermal shifting is that the contribution of single phonon absorption and emission
has not been taken into account.

It must be pointed out that the thermal spectral line broadenings and shiftings are
different for different energy level pairs of the same rare earth ion, or the same rare
earth ion and the same energy level pair but in different materials. For example, for
Nd3+: LLGG crystal [30] the width of spectral line R1 ! Y3 increases by
17.3 cm−1 when temperature rises from 10 to 300 K but the width of spectral line
R1 ! Z5 only increases by 8.1 cm−1 for the same temperature increment. The
thermal spectral line shiftings of this crystal between different energy level pairs
have much difference. The spectral line of R1 ! Z5 blue shifts by 16 cm−1 but the
spectral line of R1 ! Y3 red shifts by 3 cm−1 when temperature rises from 10 to
300 K. In the case of another garnet crystal Nd3+: CAZGAR [31] spectral line of
R1 ! Z6 blue shifts by 2.3 cm−1 while the longer wavelength spectral line
R1 ! Y1 red shift by 3.2 cm−1 in a temperature range of 10–300 K.

Originally, the thermal spectral line shifting that results from electron–phonon
interaction should be red shifting, but why some of the spectral lines have blue
shifting? Actually, it should be noted that the lattice expands at higher temperature
then the distance between the active ions and their ligands will be lengthened, and
the crystal field will be weakened, so in the above example the crystal field splitting
of multiplet 4I9/2 becomes smaller. The position of the energy level above the
“barycenter” of the multiplet such as Z5 will be lower because the “barycenter” of
the multiplet is not affected by the crystal field interaction. Although the crystal
field thermal effect is generally relatively small, but for the highest crystal energy
levels in the multiplets like Z5 and Y6, the quantity of energy level position change
is considerable. The aforementioned spectral line R1 ! Z5 of Nd

3+: GSGG crystal
has a thermal blue shifting while all the spectral lines of Nd3+: YAG crystal
reported by Kushida [32] have thermal red shifting except the spectral lines of
R ! Z5 and R ! Y6 have thermal blue shifting. These are the embodiment of the
above mechanism. Kushida [32] attempted to explain these phenomena by a
pushing effect between multiplets 4I13/2 and

4I11/2 as well as that between multiplets
4I11/2 and

4I9/2, but he neither proposed its physical mechanism nor explained if the
higher multiplet has pushing effect to lower multiplet and whether the lower
multiplet has the same pushing effect to the higher multiplet and how this effect
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change the position of the “barycenter” of the multiplet. Therefore the pushing
effect is difficult to explain the phenomena of thermal blue shifting of the spectral
line.

The following examples illustrate the effect of mass difference of host ions on
the spectral line thermal broadening of active ions. Take the thermal spectral line
broadening of Nd3+ ion in garnet crystals LLGG and CAZGAR as examples [30,
31]. By using their R1 ! Z5 spectral line thermal broadening data TD and �a and the
expression of D factor given in Sect. 6.4, the following parameters are calculated:
for LLGG crystal D=1.44, �a=T7

D ¼ 2:5� 10�17 cm�1=K7 and for CAZGAR crystal
D=1.22, �a=T7

D ¼ 1:65� 10�18 cm�1=K7. When temperature rises from 10 K to
300 K, the spectral line R1 ! X5 thermal broadenings of Nd3+: LLGG crystal and
Nd3+: CAZGAR crystal are 8.1 and 4.5 cm−1, respectively. The situation is similar
for the transition metal ions. By using TD and �a data of R line in Cr3+: YAG and
Cr3+: YGG [33], the calculated result for YAG crystal is D = 1.17,
�a=T7

D ¼ 1:53� 10�17 cm�1=K7; for YGG crystal it is D = 1.23,
�a=T7

D ¼ 8:77� 10�17 cm�1=K7. When the temperature rises from 7 K to 240 K,
the R line broadenings of Cr3+: YAG crystal and Cr3+: YGG crystal are 5.4 and
25 cm−1, respectively.

Just as pointed out in Sect. 6.4, the spontaneous phonon emission constitutes the
main contribution to the spectral line broadening at very low temperature.
Therefore, the transition to higher energy states of final multiplet will have larger
spectral linewidth. This is a common phenomenon, not only demonstrated on the
R1 ! Y1 and R2 ! Y1 spectral lines but also can be clearly seen in the following
low temperature emission and absorption spectra: Fig. 6.6a is the emission spec-
trum of Pr3+: YAB excited to multiplet 1D2 measured at 10 K [34]. It can be seen
that the spectral linewidth increases with wavelength. The emission lines with
longer wavelength are those jumping to higher crystal field energy levels of ground
multiplet which have more spontaneous phonon emission channels. Figure 6.6b is
absorption spectrum of NAB crystal that corresponds to the transition to multiplet

Fig. 6.6 a YAB: Pr3+ 1D2 ! 3H4 emission spectrum at 10 K; (a), (c), (d), (f) are transition to
crystal energy levels in 0, 231, 332, 560 cm−13 of H4 [34]; b

4I9/2 ! 4F3/2 absorption spectrum of
NAB at 10 K [35]
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4F3/2 measured at 10 K [35]. The absorption spectral line peak at shorter wave-
length corresponds to the transition to a higher crystal field energy level R2 of
multiplet 4F3/2 which has the probability to emit phonon so that it has wider spectral
linewidth compared to that of the absorption spectral line peak at longer wavelength
which is the transition to the lowest crystal field energy level R1 of multiplet 4F3/2
and the level is impossible to emit phonon.

The spectral line thermal broadening of laser materials not only has practical
meaning for usually laser application but also is an important subject of the study of
coherent optical signal processing, storage and quantum information technology,
because in these cases the spectral line thermal broadening appears as optical
dephasing and decorrelation in time domain.
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Chapter 7
Energy Levels and Spectroscopic
Properties of Transition Metal Ions

The ruby crystal used by Maiman in 1960 to observe laser emission first in the
world is aluminum oxide crystal doped with trivalent chromium (Cr3+:Al2O3).
Tunable laser crystals and laser materials for Q switch and mode-locked devices
have been widely used in the field of laser technology after 1970. Most of them are
doped with transition metal group ions (only the ions of the first transition group,
i.e. the ions of iron group are discussed here), including titanium sapphire (Ti3+:
Al2O3), trivalent chromium-doped lithium strontium aluminum fluoride (Cr3+:
LiSrAlF6), and tetravalent chromium-doped magnesium olivine (Cr4+:Mg2SiO4)
and yttrium aluminum garnet (Cr4+:Y3Al5O12). On the other hand, the crystals
doped with bivalent iron group ions like V2+, Co2+, Ni2+, and Fe2+ also have laser
emission. More than 10 years ago, tunable laser wavelength had been extended to
4.7 lm [1] (shown in Fig. 7.1).

The basic theoretical knowledge of the energy level and spectroscopy charac-
teristics for transition metal ions in crystals will be introduced in this chapter. The
method of group chain scheme will be used to calculate matrix elements of crystal
field energy level splitting and transition probability. On the other hand, some
related laser properties will be briefly mentioned. There are many excellent
monographs [2–5] dealing with crystal field theory of transition metal ions and a
very extensive volume of literature on the iron group ions doped laser crystals,
which will not be introduced in detail, so the readers can directly refer to. The
character of the electronic structure of these ions is that they have an unfilled
3d shell, that is, their electronic configurations are 3dq, where the electron number
q can vary from 1 to 9. The 3dq shells of these ions are not shielded by outer filled
shells like those of rare earth ions; in this situation the crystal field and lattice
vibration have a strong effect on their electronic states and the transitions between
these states. The crystal field energy is comparable to the energy of Coulomb
interaction between electrons but larger than that of the spin–orbit interaction.
Therefore, in order to perform the theoretical calculation of energy levels, the
crystal field perturbation of d electron must be considered at first, from high
symmetry field to lower symmetry field step by step, then the spin–orbit coupling is
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subsequently included. The discussion of Chap. 6 shows that, in this situation, there
are larger shift between the zero points of configuration coordinate curve of the
excited state and that of the ground state; hence the emission and absorption spectra
show the pattern of multi-phonon side band.

Solid-state laser properties of transition metal ions will be discussed as exam-
ples. However, the knowledge of energy level structure and transition character-
istics of the transition metal ions studied in this chapter can also be used to
luminescent materials.

It should be said that in order to accord with energy level symbols usually used
in spectroscopy of transition metal ions, the Milliken’s symbols of group repre-
sentation are adopted in this chapter except those used in 3jm factors.

7.1 Energy Levels and Spectral Properties of 3d1 Electron
System

Supposing Ti3+ ions in crystal are at the center of a regular octahedron consisting of
six anions with charge –Ze, let’s consider the crystal field effect on the d electron.
Obviously, the interaction potential of these anions with d electron can be, in point
charge model, expressed as

Vc rð Þ ¼
X6
i¼1

Ze2
�
Ri � rj j ð7:1Þ

where r = (r, h, u) and Ri = (R, Hi, Ui) are the position vectors of the electron and
the ligand i, respectively. The Schrödinger equation of the electron can be written as

Fig. 7.1 Overview of tunable
solid-state lasers [1]
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� �h2=2m
� �

DþU rð ÞþVc rð Þ� �
u rð Þ ¼ Eu rð Þ ð7:2Þ

where U(r) is the interaction potential of the electron with central field of the free
ions which is independent of the angular variables, thus can be expressed as a
function of scalar coordinate r. The perturbation method, to treat Vc(r) as a per-
turbation, should be used to solve (7.2). Crystal field potential Vc(r) is generally
expanded in terms of spherical harmonic functions in crystal field theory. It takes
the form of

Vc rð Þ ¼
X1
k¼0

Xk
m¼�k

rkBkqC
ðkÞ
q h;uð Þ ð7:3Þ

where

CðkÞ
q h;uð Þ ¼ 4p

2kþ 1

� �1=2

Ykq h;uð Þ ð7:4Þ

Bkq ¼ 4p
2kþ 1

� �1=2 Ze2

Rkþ 1

X6
i¼1

Y�
km Hi;Uið Þ ð7:5Þ

Equation (7.3) is a general expression, when it is applied to specific case studied,
then some restrictions should be added.

First, according to Wigner–Eckart theorem and the triangle condition of the 3-
j symbol introduced in Chap. 2, it can be seen that in case of d electron where
l = l′ = 2, the related matrix element unlmh jVc un0l0m0j i is zero unless k � 4. For the
problem of crystal field energy splitting, the wave functions involved belong to the
same configuration (i.e. the same parity) and so the crystal field potential should
have even parity, that is only the even k value in k � 4 should be considered.
Secondly, in the first-order approximation, the active ion can be seen as in the
center of regular octahedron composed by six negative ions with charge −Ze.
As pointed out in Chap. 2, Vc is invariant under the operations of cubic group
operations. Owing to the existence of the fourth-order symmetry axis, in the range
of k � 4, k can only be equal to 0 or 4 and q must also be 0, 4, and −4. If the term
with k = 0 is omitted, which has only a parallel shift of all the levels, then the
crystal field potential will be

Vc ¼ 7Ze2

2R5 r4 Cð4Þ
0 h;uð Þþ 5

14

� �1=2

Cð4Þ
4 h;uð ÞþCð4Þ

�4 h;uð Þ
h i( )

ð7:6Þ

By using the language of group chain scheme introduced in Chap. 3, it means that
when the irreducible representation of rotation group SO3 is reduced to the irre-
ducible representation of cubic group, there is only the term of k = 4 that can have a
component belonging to the identity representation. If the wave function of the
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3d electron expressed as u32m= R32(r)Y2m(h,u), then the matrix elements can be
calculated as

u32;þ 2

	
Vcj ju32;þ 2


 ¼ u32;�2

	
Vcj ju32;�2


 ¼ Dq

u32;þ 1

	
Vcj ju32;þ 1


 ¼ u32;�1

	
Vcj ju32;�1


 ¼ �4Dq

u32;0

	
Vcj ju32;0


 ¼ 6Dq

u32;þ 2

	
Vcj ju32;�2


 ¼ u32;�2

	
Vcj ju32;þ 2


 ¼ 5Dq

where Dq ¼ Ze2
6R5 r4

	 

3d , < r4 > 3d is the fourth power of the electronic coordinates

r averaged over 3d orbital. The calculation of the matrix elements can use (2.43a) of
the Wigner–Eckart theorem and 3-j symbol introduced in Chap. 2. For example

u32;þ 2

	
Vcj ju32;þ 2


 ¼ 7Ze2

2R5 r4
	 


3d �1ð Þ2�2 2h C4
�� ��2i � 2 4 2

�2 0 2

� �

¼ 7Ze2

2R5 r4
	 


3d�
5

ffiffiffi
2

pffiffiffiffiffi
35

p � 1
18� 35

� �1=2

¼ Ze2

6R5 r4
	 


3d� Dq

ð7:7Þ

where 3-j symbol can be found from Rotenberg [6]; at the same time note that the 3-
j symbols vanish unless m1 + m2 + m3 = 0 and so for the calculation of above three
matrix elements only the first term of (7.6) should be considered. On the other hand,
(2.53) is used to calculate 2h Cð4Þ�� ��2i.
Therefore the following secular equation is obtained

E0 þDq� E 0 0 0 5Dq
0 E0 � 4Dq� E 0 0 0
0 0 E0 þ 6Dq� E 0 0
0 0 0 E0 � 4Dq� E 0

5Dq 0 0 0 E0 þDq� E




¼ 0

By exchanging the fifth row with the second row and then exchanging the fifth line
with the second line, the secular equation changes to

E0 þDq� E 5Dq 0 0 0
5Dq E0 þ 4Dq� E 0 0 0
0 0 E0 þ 6Dq� E 0 0
0 0 0 E0 � 4Dq� E 0
0 0 0 0 E0 � Dq� E




¼ 0
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This determinant equation is equivalent to a three-order one with only diagonal
elements and a two-order one. It is easy to find out that its solution can be divided
into two groups, one has double degeneracy, the other has triplet degeneracy, that is
(E) = E0+ 6Dq with double degeneracy and E(T2) = E0−4Dq with triplet degen-
eracy. The spin degeneracy has not been considered now.

From Chap. 2 we know that the representation DL (L = 2) of the rotation group
SO3 will be reduced to one irreducible representation C3(E) (two-dimension) and
one irreducible representation C5(T2) (three-dimension) of group O (it can be found
in Appendix B, there is 2!3⊕5 of the SO3!O irreducible representation reduc-
tion). Only the electronic states of the orbital and their degeneracy are considered
here, so the spin degeneracy has not been included. The energy levels are denoted
by the symbols of group irreducible representation as shown in Fig. 7.2.

When active ions have the octahedral coordination symmetry, the energy levels
of 2E and 2T2 are shown in Fig. 7.2, in which the energy of 2E is higher than that of
the 2T2. However, if the active ions have tetrahedral or cubic coordination sym-
metry, the energy of the 2E is lower than that of the 2T2; besides their crystal field
splittings are smaller by a factor of 4/9 and 8/9, respectively. This is because in
these three coordination symmetries, the Dq values have the following relation

Dq octaheð Þ ¼ � 9
4
Dq tetratð Þ ¼ � 9

8
Dq cubicð Þ ð7:8Þ

In titanium sapphire (Ti3+:Al2O3), the positions occupied by Ti3+ ions have a
small trigonal distortion, that is, they have the crystal field components with point
group symmetry C3, which further split the energy levels with symmetry of point
group O. Since the crystal field does not change the spin multiplicity, in the fol-
lowing discussion, the sign of the spin multiplicity is omitted for the symbols of all
the energy levels. The irreducible representation C5(T2) of group O becomes
reducible in group C3 and can be reduced to the sum of two irreducible repre-
sentations A1⊕E (C1⊕(C2⊕3)) of group C3. Correspondingly, the energy level

John-Teller effect

A1

Free ion Cubic Trigonal 

Spin-orbit coupling 

2D

2E

2T2

2E 2E

Fig. 7.2 Energy levels of d1 electron in cubic and trigonal fields
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E(C5) is split into two energy levels E(C1) and E(C2⊕3) (the C2 and C3 are
one-dimensional irreducible representations and conjugate to each other, and
together form a two-degree degenerate level). On the other hand, the irreducible
representation E(C3) of group O corresponds to the irreducible representation
E (C2⊕3) of group C3. It means that the energy level E(C3) of the system with
symmetry O will not be further split in the trigonal crystal field. Moreover, this
double-electron state has no spin–orbit splitting, as discussed in the following.

For a single electron, the spin–orbit interaction Hamiltonian is expressed as
(1.2), where the operator of orbital angular momentum belongs to T1(C4) irre-
ducible representation of the group O. If the orbital wave function belongs to
G irreducible representation of group O, then the condition for a non-zero spin–
orbit interaction matrix element is that the product G⊗T1(C4)⊗ G should include
A1(C1) representation of group O. Therefore, the matrix element of the spin–orbit
interaction between the energy levels with orbital wave functions belonging to
T1(C4) and T2(C5) of group O is non-zero, because T2(C5)⊗T1(C4)⊗T2(C5)
includes A1(C1) representation of group O.
The ground electronic double-state E(E) is one of the energy levels split under
trigonal crystal field from energy level E(T2) belonging to irreducible representation
T2 of group O (see Fig. 7.2). According to the formula given in Chap. 3, the matrix
element of spin–orbit interaction of the wave function with irreducible represen-
tation E of C3 symmetry group can be expressed as the spin–orbit interaction matrix
element of wave function with T2 irreducible representation of group O multiplied
by corresponding 3jm factor. Therefore, the ground electronic double-state E
(E) under C3 symmetry can be split by spin–orbit interaction into two electronic
single levels.
The higher electronic double-state E(E) is the energy levels split under trigonal
crystal field from energy level E(E) belonging to E irreducible representation of
group O, and its wave function does not satisfy the condition E(C3)⊗T1(C4)⊗E(C3)
that includes A1(C1) so that it cannot split by the spin–orbit interaction. However,
some of the energy levels without spin–orbit splitting can be split by Jahn-Teller
effect, that is the degeneracy will be removed by the electron–lattice vibration
interaction. Similar to the analysis given by Sugano [3] for the E level with cubic
symmetry, the Jahn-Teller splitting of E level with trigonal symmetry can be cal-
culated. If one denotes two coordinates of normal modes by Q1 and Q2 belonging to
irreducible representation E which have interaction with electron states, introducing
the polar angle h and radius vector q, coordinates Q1 and Q2 can be expressed as

Q1 ¼ q cos h;Q2 ¼ q sin h

Therefore, after Jahn-Teller splitting the energy separation between these two levels
will be
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DEJT ¼ 2Aq

where A has the following relation with Q1 and Q2

A ¼ 1
2

E VEgðrÞ
�� ��	

Ei E
E

E
E

E
E

� �O

C3

where VEg rð Þ is the coefficient of the first-order term of the electron-phonon
interaction energy expanding in terms of the normal coordinates, which belongs to
the Eg representation. The 3jm factor [7] involved in the formula is

E
E

E
E

E
E

� �O

C3

� 3 3 3
2 2 2

� �O

C3

¼ 1ffiffiffi
2

p

In the case of titanium sapphire, the value obtained by experiment is
DEJT = 1850 cm−1 [8].

The energy levels of Ti3+ in titanium sapphire have been shown in Fig. 7.2. It
should be pointed out that the five electronic single-states split by crystal field and
spin–orbit interaction or Jahn-Teller effect still have Kramers degeneracy, which
can only be removed by magnetic interactions. The absorption band of titanium
sapphire is peaked at 490 nm corresponding to the transition from low-energy
double-state E (E) to high-energy double-state E(E). The peak of the emission band
is at 770 nm and the p polarized spectrum has higher intensity than that of the r
polarized spectrum at 300 K. Its absorption and emission spectra are shown in
Fig. 7.3.

It is shown that the titanium sapphire used as tunable laser crystal has the
following distinct advantages: First, the separation between the excited state and the
ground state is proportional to crystal field strength and so is strongly affected by
crystal field and lattice vibration. There are large Stokes shift between the excited

EmissionAbsorption

Fig. 7.3 Absorption and
emission spectra of titanium
sapphire
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and ground states, which leads to a very wide phonon side band; hence the titanium
sapphire laser has a very wide tunable range from 650 to1060 nm. Secondly, the
initial and final states of the transition have the same spin multiplicity, thus the
transition is spin allowed and so is strong. Correspondingly, the lifetime of the
upper laser state is as short as 3.2 ls, thus it can only be efficiently pumped by laser
sources. Thirdly, the aluminum oxide is a material with very high Debye temper-
ature so that the electrons of Ti3+ ions have strong interaction with lattice vibration.
In this way, the absorption and emission will be intensified. As a result, the
pumping efficiency is higher than 25%. Fourthly, as shown in the energy level
diagram, above the fluorescent level, there are no other excited states; hence the
excited state absorption is non-existent. These are the prominent advantage of
titanium sapphire over other tunable laser crystals. Other spectral properties of the
titanium sapphire can be referred to the paper published by Moulton [9]. Ti:
BeAl2O4 is also a trivalent titanium tunable laser crystal, and its spectral properties
can be found in [10]. It should be pointed out that the disadvantage of Ti3+ laser
materials is the valence instability of Ti3+ ions; they can change to Ti2+ or Ti4+ and
will reduce the laser performance.

7.2 Energy Levels and Spectral Properties of 3d2 Electron
System

Transition metal ions Cr4+, V3+, Ti2+, and Mn5+ have electronic shell 3d2; among
these the Cr4+ ion is more stable. One can investigate the electronic states of d2

configuration in crystals by two schemes.
First, the weak field scheme: It can be seen from Table 1.1 in Chap. 1 that the

terms of the free ions with configuration d2 are: spin single-state—1S, 1D, 1G and
spin triple-state—3P, 3F. When the ions are sited in positions with symmetry lower
than that of the rotation group SO3, then the free ion states 2S+1L belonging to
irreducible representation DL of group SO3 will be split into crystal field states
belonging to irreducible representations of group O. The reduction of irreducible
representation can be obtained by the theorem introduced in Chap. 2. One can refer
to the reduction table in Appendix B to obtain the following results:

1SðL ¼ 0Þ �1A1;DðL ¼ 2Þ �1E;1 T2;
1GðL ¼ 4Þ �1A1;

1 E;1T1;
1 T2;

3PðL ¼ 1Þ �3T1;
3FðL ¼ 3Þ �3A2;

3T1;
3 T2.

Secondly, the strong field scheme: As having been seen in the previous section,
single electron in the cubic field will have two energy levels E and T2. Two
d electrons can be: both in E state; both in T2 state; or one in E state and the other in
T2 state. After introducing the interactions between electrons and between the spin
and orbital momentum, the final electronic energy levels usually will be denoted by
irreducible representation symbol with lowercase letters. Therefore, the states
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occupied by single electron are designated by letter e and t2. The electronic system
studied can have the configurations of t2

2, e2, or t2
1e1. By the multiplication table of

the irreducible representation of group O, the following can be obtained

T2ð5Þ � T2ð5Þ ¼ A1ð1Þ � Eð3Þ � T1ð4Þ � T2ð5Þ
Eð3Þ � Eð3Þ ¼ A1ð1Þ � A2ð2Þ � Eð3Þ
T2ð5Þ � Eð3Þ ¼ T1ð4Þ � T2ð5Þ

The figures in the brackets of Muliken symbols are the subscripts i of Bethe symbol
Ci. The corresponding relationship between the Muliken symbol and the Bethe
symbol (and the subscript of Bethe symbol) is listed to facilitate the search for the
relevant tables of this book. The following will be described in accordance with the
Muliken symbols usually used in the literature of spectroscopy for iron group ions.
The relations of two kind symbols for low symmetry group can be found in
Appendix A.

According to Pauli exclusion principle, two electrons in the states of T1 and T2 in
configuration t2

1e1 can have their spin either parallel (spin triple state) or antiparallel
(spin single-state), which results in the states of 3T1

1T1,
3T2, and

1T2. The spin
multiplicity of the configurations of t2

2 and e2 can be determined similarly. According
to Pauli exclusion principle, the total electron wave functions should be antisym-
metry. Thus, if the orbital wave function is symmetry, the spin wave function should
be antisymmetry. Contrarily, if the orbital wave function is antisymmetry, the spin
wave function should be symmetry. In order to determine the symmetry properties of
orbital wave function, the symmetry properties of the irreducible representation
reduced by direct product of group representations discussed in Chap. 2 should be
utilized.
The vector space of t2

2 is the direct product of two t2 vector spaces t2⊗t2. If the basic
vector of one of these vector spaces is expressed by w(1,i) (ith basic vector of
electron 1), the other is w(2,j) (jth basic vector of electron 2), then the basic vector
of the direct product space will be w(1,i)w(2,j). This direct product space can be
reduced to a sum of a series of subspaces with each subspace corresponding to one
irreducible representation reduced from the direct product representation of T2⊗T2.
The basic functions of these subspaces are the linear combinations of w(1,i)w(2,j).
As to the symmetry properties of exchange electronic coordinates, the basic vector of the
direct product space can be divided into: symmetry type w(1,i)w(2,j) + w(2,i)w(1,j) and
antisymmetry type w(1,i)w(2,j)-w(2,i)w(1,j) (i6¼j). The subspaces formed by symmetric
basic vectors correspond to one or several symmetric irreducible representations and
those formed by antisymmetric basic vectors correspond to one or several antisymmetric
irreducible representations. The character of the symmetric representation of the square
direct product is denoted by [v2](G) and that of the antisymmetric representation is
denoted by {v2}(G) (in the problem discussed, G is one of the symmetry operation of
the cubic group O). Obviously, [v2](G) can be calculated as follows
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G w 1; ið Þw 2; jð Þþw 2; ið Þw 1; jð Þ½ 	 ¼
X
lm

GliGmj w 1; lð Þw 2;mð Þþw 2; lð Þw 1;mð Þ½ 	

The indexes l and m are only the symbols for summation; exchanging them will not
alter the values of the sum. Therefore, the above expression can be changed into

1
2

X
lm

GliGmj þGmiGlj
� �

w 1; lð Þw 2;mð Þþw 2; lð Þw 1;mð Þ½ 	

The character [v2](G) obviously is to multiply from the left of the wave function
w 1; ið Þw 2; jð Þþw 2; ið Þw 1; jð Þ then let l = i, m = j and sum over i and j as shown in
the following

v2
� �

Gð Þ ¼
X
ij

wð1; iÞwð2; jÞþwð2; iÞwð1; jÞ½ 	G wð1; iÞwð2; jÞþwð2; iÞwð1; jÞ½ 	

¼
X
ij

1
2

GiiGjj þGijGji
� � ¼ 1

2
v Gð Þ2 þ v G2

� �h i
ð7:9Þ

because X
i

Gii ¼
X
j

Gjj ¼ v Gð Þ;
X
ij

GijGji ¼
X
j

G2
jj ¼ v G2� �

Similarly, one can obtain

v2
� �

Gð Þ ¼ 1
2

v Gð Þ2�v G2� �h i
ð7:10Þ

The characters of the symmetry and antisymmetry representations of the cubic
group are listed in Table 7.1. According to the reduction formula of irreducible
representation ((2.7) in Chap. 2) and the characters given in Table 7.1, it is possible
to determine the symmetry and antisymmetry irreducible representations. By using
the symmetry representation character shown in Table 7.1 [v2](T2) =
v(A1) + v(E) + v(T2) and {v2}(T2) = v(T1). It shows that the direct product T2⊗T2
includes symmetry irreducible representations A1, E, and T2, and antisymmetry
irreducible representation T1. The antisymmetry character of the total wave function
requires that the symmetry orbital wave function should be coupled with
antisymmetry spin wave function. Contrarily, the antisymmetry orbital wave
function should be coupled with symmetry spin wave function.

Consequently, t2
2 configuration generates three-spin single states 1A1,

1E, and 1T2
as well as one-spin triple state 3T1. Similarly, e2 configuration includes two-spin
single states 1A1,

1E, and one-spin triple state 3A2. Obviously, the results obtained
by the strong field scheme are the same as those of the weak field scheme.
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By means of the term energy of the free ions given in Chap. 1, it is convenient to
calculate energy levels of the ions in a crystal field by the weak field scheme. The
vector space formed by the electronic wave function of the entire 3d2 configuration
can be reduced to several subspaces; each subspace has the same irreducible rep-
resentation and spin multiplicity. Owing to the fact that the crystal field
Hamiltonian belongs to the identity representation of the point group of active ions
and does not include spin variable, the crystal field matrix elements between wave
functions belonging to different subspaces are equal to zero. Therefore, the calcu-
lation of energy eigenvalue only needs to be performed in the same irreducible
representation subspace. As a simple example, one can see the energy calculation of
the levels belonging to A1 representation of cubic group O. Both the free ion terms
1S and 1G generate level A1 in the cubic crystal field. The electrostatic interaction
energy between electrons has been given in Chap. 1, i.e.

d2; 1S;A1
	 H0 þHee d2; 1S;A1

 
 ¼ Aþ 14Bþ 7C

d2; 1G;A1
	 H0 þHee d

2; 1G;A1

 
 ¼ Aþ 4Bþ 2C

The calculation of the matrix elements of the crystal field Hamiltonian can utilize
directly the 3jm factor of the group-chain SO3
O and (2.53) as well as the formulas
similar to (3.18) and (3.19). The reduced matrix elements of tensor U(4) can be
found from the published tables [11]. In the case of d electron in cubic field, there is
only one term in the crystal field Hamiltonian

Vc ¼ C4
0b

4
0 ð7:11Þ

By using tetragonal coordinate system, that is adopting the tetragonal symmetry
axis as z-axis, it can be obtained in the electrostatic model that

Table 7.1 Symmetry and
antisymmetry representations
of T2⊗T2 of the cubic group
O

O E 8C3 3C2 6C4 6C2’

v(A1) 1 1 1 1 1

v(A2) 1 1 1 −1 −1

v(E) 2 −1 2 0 0

v(E2) 2 −1` 2 2 2

v(T1) 3 0 −1 1 −1

v(T2) 3 0 −1 −1 1

v(T2
2) 3 0 3 −1 3

[v2](E) 3 0 3 1 1

{v2}(E) 1 1 1 −1 −1

[v2](T2) 6 0 2 0 2

{v2}(T2) 3 0 −1 1 −1
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C4
0 ¼ 42 3=7ð Þ1=2Dq ð7:12Þ

The energy of 3A2 level is equal to that of the spectral term 3F of the free ion, that is
A-8B (shown in Chap. 1, Table 1.4) plus the following crystal field energy

d2; 3F; 3A2
	 Vc d

2; 3F; 3A2
 


¼ 3 4 3

2 1 2

� �SO3

O

2

c

� �
d2; 3F U 4ð Þ�� ��d2; 3FD E

d C4
�� ��d	 


C4
0

¼
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 11

p � 1�
ffiffiffiffiffi
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where 2jm symbol equals +1, therefore

d2; 3F; 3A2
	 H0 þHee þVc d
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 ¼ A� 8Bþ 12Dq ð7:14Þ

Similarly, the energy of 3T2 is equal to the A-8B plus the following crystal field
energy
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In the above equation c represents the component of T2 irreducible representation.
The products of 2jm symbol with 3jm symbol following it for three c components
all equal to þ 1=

ffiffiffi
3

p
, therefore

d2; 3F; 3T2c
	 H0 þHee þVc d

2; 3F; 3T2c
 
 ¼ A� 8Bþ 2Dq ð7:16Þ

In the strong field scheme, the energy of 3A2 level is 20Dq and the energy of 3T2
level is 10Dq [5]. The energy difference of the two levels is also 10Dq.

All the above matrix elements include a common term A, while it has only the
effect to shift all the energy levels parallel. If we focus on the separation between
different levels, the term A can be omitted. Substituting the detailed value of B and
Dq into above secular determinant or matrix elements of Hamiltonian, the eigen-
values of all the energy levels discussed can be obtained. Drawing a curve of energy
eigenvalue E/B versus the crystal field strength Dq/B, the Tanabe-Sugano (T-S)
energy level diagram shown in Fig. 7.4 can be obtained.
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This T-S energy level diagram is in fact similar to that of the d8 configuration in
the octahedron position. In the latter case, the ground state is 3A2 but not

3T1 and the
third excited state with the same spin multiplicity belongs to 3T1.

The relationship of the energy level of the transition metal ions in the octahedron
position with that in the tetrahedron position is described below.

The previous calculation shows that if the transition metal ions occupy the
octahedron position, the crystal field parameter in the group chain scheme can be
expressed as the form of (7.12). The T-S energy level diagram given in many
reference books is for this octahedron position. However, when the active ions are
sited in tetrahedron position, (7.8) shows that the crystal field parameter Dq is not
only different in number but also opposite in sign to that for the octahedron posi-
tion. Consequently, their energy level diagrams will be different. The following
relation between the reduced matrix element of tensors U(k)(4 l + 2−q) and
U(k)(q) was given by Nielson et al. [11]

aSL UðkÞ 4lþ 2� qð Þ�� ��aSL0D E
¼ � �1ð Þk aSL UðkÞ qð Þ�� ��aSL0D E

Applying it to the case studied k = 4, the sign of reduced matrix elements of tensor
U(4) for dq configuration is the opposite of that for d10−q configuration. Therefore, the
dq configuration in octahedron position has a similar T-S energy level diagram as
d10−q configuration in tetrahedron position, because the negative sign generated in
crystal parameter is cancelled by the negative sign coming from reduced matrix
elements of tensor U(4). This is the reason why the T-S energy level diagram for d8

configuration in octahedron position is similar to that of d2 configuration in tetrahe-
dron position, if one concerns only the relative position of different energy levels.

As typical examples of the energy levels and spectra of d2 electronic configu-
ration, the energy levels and spectra of Cr4+:Y2SiO5 and Cr4+:Mg2SiO4 will be

Fig. 7.4 Tanabe-Sugano
diagram of d2 electron
configuration in the
octahedron position
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analyzed. The former is a very good example for the study of the spectra of
tetravalent chromium-doped crystals, because there is pure Cr4+ doping, where Cr4+

ions occupy definite C3v positions.
The energy levels of crystal Cr4+:Y2SiO5 are shown in Fig. 7.5. Cr4+ ions in crystal
Cr4+:Mg2SiO4 occupy Si positions of the SiO4 tetrahedron and have approximately
the C3v symmetry [12]. Note that the axis a has a threefold symmetry.

Now let’s turn to the discussion of the selection rule of absorption transitions. It
can be seen from the character table of group C3v that the z component of the
electric-dipole moment belongs to representation A1 of the group C3v and its x and
y components belong to representation E. The allowed electric-dipole transitions
should satisfy the requirement of i erj jh f i 6¼ 0. In the language of group theory, the
product of the irreducible representations of the initial and the final states should
include the irreducible representations of the electric-dipole moment. Note that the
z axis should be the threefold axis of SiO4, that is the crystal axis a. The transition
3A2!3A2 (

3T1) shown in Fig. 7.5 has polarization of electric field E parallel to axis
a, because of the relations A2⊗A2 = A1 (the z component of the electric-dipole
moment belongs to A1 representation). Similarly, the transition 3A2!3E (3T1) has
polarization of electric field E perpendicular to axis a, because of the relation
A2⊗E = E. Strictly speaking, the position symmetry of Cr4+ ions in crystal Y2SiO5

is Cs, Therefore, the transition
3A1 (

3T2)!3A2 forbidden in the C3v symmetry case is
allowed in crystal Cr4+:Y2SiO5, which corresponds to a weak absorption at

Fig. 7.5 Energy level
diagram of Cr4+:Y2SiO5
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wavelength of 882.6 nm. The weakness of this absorption line shows that the
distortion of crystal field to Cs symmetry is small. The polarized absorption spec-
trum of the Cr4+:Y2SiO5 crystal is shown in Fig. 7.6 and the fluorescence spectrum
of this crystal is shown in Fig. 7.7.

The laser properties of this crystal at the temperature of liquid nitrogen were
studied by Chai et al. [13] Actually there is a laser emission even at temperature of
257 K. It is very interesting to note that pumped at different wavelengths, their laser
and tunable performances have a big difference. Pumped by 1064 nm-laser, the
emission peak is at 1270 nm and has linewidth of 10 nm. However, the emission
peak is at 1225 nm and has linewidth of 23 nm when the pumping wavelength is
532 nm. Finally, pumped at 840 nm, the emission peak is still at 1225 nm while the
linewidth changes to 30 nm.

Chromium ions in crystal Mg2SiO4 may exist at the same time as trivalent and
tetravalent states with trivalent chromium occupies the octahedron Mg position
(having symmetry of Cs and Ci) and the tetravalent one occupies the tetrahedron
Si position (having approximately C3v symmetry with Cs distortion component).
These have been confirmed by detailed structure data, electron paramagnetic
resonance and electron nuclear double-resonance experiments [12, 14, 15].

Fig. 7.6 Polarized absorption spectrum of the Cr4+:Y2SiO5 crystal [13]
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However, as one of the tunable laser crystal, the Cr4+:Mg2SiO4 has a series of
advantages, although the spectrum of this crystal is rather complicated.
Particularly, its laser emission tunable wavelength range of 850–1400 nm covers
the wavelength of 1300 nm, which is very important to the laser optical com-
munication. It also covers the water absorption wavelength range, and by tuning
the wavelength of the laser, the penetration depth in the human body can be
controlled, hence is very useful in laser medical treatments. The Cr4+:Mg2SiO4

laser has become one of the important commercial laser systems at room tem-
perature [16], and it is necessary to know more about its spectral properties.
The ratio of the amount of Cr4+ ions to that of Cr3+ ions depends on the condition of
crystal growth. For the crystals grown in reduction atmosphere, the ratio of the Cr4+

will be decreased and that of the Cr3+ will be increased. Therefore, in order to
obtain crystal with larger amount of Cr4+, the crystal growth should be in standard
condition. Their main transition wavelengths are listed in Table 7.2 [16].
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Fig. 7.7 Fluorescence
spectrum of Cr4+:Y2SiO5

crystal [13]

Table 7.2 Main transitions
and their central wavelengths
of Cr4+:Mg2SiO4 crystal

Transition channel Central wavelength (nm)
3A2!3T2 1092.9
3A2!3T1(t2e) 648.1
3A2!1E 629.9
3A2!3T1(t2

2) 373
3A2!1T2 348
3T2!3A2 1142.9
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The spectral and tunable laser properties of Cr4+ ions in garnet crystals especially
in YAG crystal have been fully studied [17]. Wavelength of these lasers covers the
wavelength range of minimum loss fiber communication and eye safe. Among
these, Cr4+:YAG has realized 1309–1596 nm tunable laser emission at room
temperature with peak emission cross-section of 1.7 � 10−19 cm2, while Cr4+:
YSAG has realized 1446–1604 nm tunable laser emission at room temperature with
peak emission cross-section of 1.5 � 10−19 cm2.

7.3 Energy Levels and Spectral Properties of 3d3

Electronic System

Now turn to the energy level structure and spectral properties of trivalent chro-
mium, which have been studied first and intensively among transition metal ions.
Compared with 3d2 system, 3d3 system has more complicated energy level struc-
ture. However, using the group chain scheme, the crystal field calculation will be
very simple. Taking the upper laser state 4T2 and lower laser state 4A2 of the Cr3+

tunable laser crystal as examples, let us see how to use the method proposed to
calculate energy eigenvalues of the crystal field Hamiltonian. Both the states come
from free ion’s spectral term 4F and there are only one 4A2 state and one 4T2 state in
the configuration 3d3, so it is only necessary to calculate the diagonal matrix
elements for the calculation of crystal field energy levels
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It should be noted that for irreducible representation T2, its three c components
that have the same crystal field matrix elements corresponding to the calculated
energy level is a threefold degenerate electronic orbital energy level. On the other
hand,
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4A2 and
4T2 levels are both derived from the same free ion spectral term 4F, and

the spectral term near it in energy is 4P, which can only introduce the energy level
4T1 with different irreducible representation from those of 4A2 and

4T2 levels. The
energy operator matrix elements between them is equal to zero. Therefore, the
energy eigenvalues of 4A2 and

4T2 levels can be determined by the diagonal matrix
element of the energy operator, then

Eð4T2Þ � Eð4A2Þ ¼ 10Dq ð7:20Þ

By using strong coupling approximation, it can be shown [18] that E(4A2) = 3A
−15B and E(4T2) = 10Dq + 3A−15B, then the separation between these two levels
is the same as (7.20), which is a formula often used in the calculation of spectro-
scopic parameters of tunable laser crystals. Dq is a parameter to characterize the
crystal field strength of transition ions. The value of Dq increases with anions
according to the order Cl− < F−<O2− < S2−.

The energy levels of other states can be simply obtained by the group chain
scheme. By the weak field scheme, the energy state 2E appears in three spectral
terms, that is 2G, 2H, and two 2D, so a 4�4 secular equation should be solved. By
the strong field scheme, the calculation of the energy level 2E involves matrix
elements of crystal field and Coulomb interaction which can be referred to
Table 9.3 of [18], but the zero-energy point should be shifted, so the diagonal
matrix elements should be subtracted by 12Dq. Both the state 2E and ground state
4A2 come from orbit t3 which has a larger energy interval with the t2e and e3 orbits
and is less affected by these orbits. Therefore, the relationship of energy level
position with the intensity of the crystal field strength is basically the same for the
state 2E and for the ground state 4A2, that is, the separation of the state 2E with the
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ground state 4A2 is independent of the crystal field strength and then the electronic
transition of 2E!4A2 results in a very narrow zero phonon lines. The energy levels
involved in the absorption and emission transitions for tunable laser are 4T1 and

4T2.
Crystal field state 4T1 comes from spectral terms 4F and 4P; its calculation involves
a 2 � 2 secular equation, and one of the diagonal matrix elements has been
obtained and shown in (7.18). The non-diagonal matrix elements of static electronic
and crystal field interaction Hamiltonian between the wave functions belonging to
spectral terms 4F and 4P should be calculated. The workload of this calculation is
small; the only thing to do for the calculation of the matrix element is to find a 3jm
factor. The results are shown in Table 7.3.

Trivalent chromium ions in the crystals usually occupy octahedron positions and
have the T-S diagram shown in Fig. 7.8.

As has been pointed out in previous section, whether the positions of the ions are
octahedron or tetrahedron should be noticed when one uses the T-S energy level
diagram. Remember that for the ions of iron group, the T-S diagram for the energy

Table 7.3 Energy matrix
elements between spin quartet
states of d3 configuration in
cubic crystal field

4T1
4F 4P

4F 3A−15B+6Dq 4Dq
4P 4Dq 3A

4T2
4A2

4F 4F
4F 3A−15B−2Dq 3A−15B−12Dq

Fig. 7.8 Tabane-Sugano diagram for 3d3 electronic configuration in octahedron position
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level of 3dq electronic configuration in tetrahedron positions is similar to the T-S
diagram for the energy level of 3d(4l+1−q) electronic configuration in octahedron
positions.

As an example, the energy levels and spectroscopic properties of ruby crystal
Cr3+:Al2O3 are introduced. It can be seen from Fig. 7.8 that the positions of the
energy levels 2T1 and

2E basically do not change with the strength of crystal field,
and hence the effect of the lattice vibration is weak. Moreover, their spin state is
different from the ground state, thus limited by the spin forbidden rule. The ra-
diative transition rate is rather weak. The 2E level is further split into two levels 2�A
and �E with a separation of 29 cm−1 by the trigonal crystal field. Laser oscillation
usually occurs via the �E !4 A2 transition corresponding to the zero-phonon line R1

with spectral linewidth of 11 cm−1 at 694.3 nm. When the concentration of Cr3+ is
high or the sample size is large, the influence of reabsorption makes it have a longer
fluorescence lifetime. If it is not affected by the reabsorption, its fluorescence
lifetime is 3 ms at very low temperature. At room temperature, some particles will
be populated in the 2T1 level and slightly shorten the fluorescence lifetime of the
2E state. At very high temperature, some particles will also be populated in the 4T2
level and further shorten the fluorescence lifetime. The energy separation between
levels 2T1 and

2E is small and so the active ions in the 2T1 will transit to the 2E by a
strong non-radiative transition as will be pointed out in the next chapter, although
the ions in the 2T1 level have only a weak coupling with the lattice vibration. Ruby
has a strong crystal field (Dq/B = 2.8 [19]) with absorption bands 4T1 and

4T2 above
the energy level of 2E and the separation between 4T2 and

2E is 2300 cm−1. In this
case, the particle in the absorption band 4T2 has a high non-radiative transition rate
to decay to the 2E, while the particle in the 2E is impossible to transfer to the 4T2 by
thermal population. It is the reason why the ruby has only emission from the 2E. It
should be noticed that the emission cross-section of the R line is even larger than
that of the 4T2!4A2 transition due to its narrow linewidth, although the transition of
2E!4A2 is spin forbidden. Therefore, the ruby crystal becomes the gain medium of
the first laser system in the world, although it is a three-level system and usually has
a much higher laser threshold than those of the four-level systems.

The trivalent chromium-doped tunable laser crystals have weak crystal field. It
can be seen in Fig. 7.8, in this situation, that the position of energy level 4T2 varies
greatly with the strength of crystal field. It is close to and usually higher than the
level of 2E, but can also be lower than that of the 2E in very weak field cases. The
level of 2E forms a “particle reservoir”, which transfers the ions coming from
absorption band 4T1 to level 4T2 by thermal population, because of its long
fluorescence lifetime. The position of the energy level 4T2 changes with the crystal
field strength, thus the variation of crystal field by lattice vibration has a strong
effect on the potential of ions in the state of 4T2. As a result, the transition of
4T2!4A2 has an emission with broad linewidth. These kinds of tunable laser
crystals have their Dq/B value a little higher or even lower than 2.3. The position of
the energy level 4T2 is only several hundred wave numbers higher than or even
lower than that of the 2E level. DETE is used to denote the separation between these
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two levels. A positive or negative DETE represents that the position of the 4T2 is
higher or lower than that of the 2E, respectively. Values of DETE, peak wavelength
kpeak, radiative lifetime sr, and stimulated emission cross-section rse for several
typical trivalent chromium laser crystals are listed in Table 7.4.
As the crystal field weakens, the fluorescent band emitted by the 4T2!4A2 transition
moves to the long wavelength. Figure 7.9 is a visual picture for this variation.

A series of trivalent chromium tunable laser were developed in 1980s. Cr3+:
BeAl2O4 [20] and Cr

3+:Be2Al2(SiO3)6 [21] lasers appeared at first. The former has a
threshold of only two-fifths of that for the ruby under the same condition. It can be
pumped at high repetition rates and operated at room or even at higher temperature
with better laser performance. Its wavelength tunable range is from 701 to 826 nm.
Cr3+:Be2Al2 (SiO3)6 crystal has a gain coefficient six times that of the Cr3+:
BeAl2O4 crystal and a wide tunable range of 695–835 nm. In the study of Cr3+-
doped tunable laser crystals, in order to reduce the crystal field effect on the Cr3+

ions, the host crystals with larger lattice cell constant were adopted [22]. A series of
Cr3+-doped garnet crystals were developed in the middle of 1980s, especially, Cr3+:
Gd3Sc2Ga3O12 crystal [23]. The fluorescence lifetime of the upper laser level for
this crystal reaches 120 ls but its tunable range is limited by the excited state
absorption on the long wavelength side, while it is limited by the fluorescence
reabsorption on the short wavelength side and so has only a tunable range of about
100 nm. It was pointed out by the author [24] that in the oxysalts constituted by
anion group with high valence metal ions as its center, the effective charge of the
oxygen coordination ions adjacent to the rare earth activator will be relatively small
because of the strong polarization of the high valence cation. This chemical factor
will also weaken the crystal field strength of the activator. The typical example is
Cr3+-doped ZnWO4 with emission phonon side band expanding to 1 lm [24],
which has much smaller cell constant compared to Cr3+:La3Ga5SiO14 with tunable

Table 7.4 Energy separations and spectral parameters of Cr3+-doped tunable laser crystals

Host DETE(cm
−1) kpeak(nm) sr(ls) rse(10

−20cm2)

BeAl2O4 800 752 240 0.6

Y3Ga5O12 600 740 241 0.36

Be2Al2(SiO3)6 400 768 60 1.9

Gd3Ga5O12 300 769 160 0.6

Y3Sc2Ga3O12 250 750 139 0.6

Gd3Sc2Ga3O12 0 785 115 0.9

La3Lu2Ga3O12 <0 830 68 1.6

LiCaAlF6 780 170 1.3(p)

LiSrAlF6 825 67 4.8(p)

KZnF3 −500 820 176 1.3

MgF2 −2500 *1110

ZnWO4 −3000 1035 0.5−5.4 43.0
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range of 862–1107 nm [25], the longest wavelength obtained for Cr3+-doped laser
crystals.

Cr3+:LiSrAlF6 and Cr3+:LiCaAlF6 are the most important tunable laser crystals
in the practical applications. Both of them have large fluorescence linewidths and
much longer fluorescence lifetimes compared with titanium sapphire, and thus are
suitable for using in diode-pumped tunable femtosecond laser system [26–31].

The energy level character of trivalent chromium (or divalent vanadium) doped
tunable laser crystals is that the state of 4T2 is closed to the state of 2E. The
parameter DETE denoting this separation are given in Table 7.4. Owing to the fact
that this separation is small, the mixing of the states with different spin multiplicities
by spin–orbit interaction relieves partly the forbidden of the 2E!4A2 transition.
Hence the fluorescence lifetime of the 4T2 state is actually a composite effect of the
emission for the transition from the 4T2 state and that from the 2E state. The
effective fluorescence lifetime seff satisfies the following formula

1
seff

¼
1
sE

þ 1
sT
exp �DE=kBTð Þ

1þ exp �DE=kBTð Þ ¼ 1
sT

rþ exp �DE=kBTð Þ
1þ exp �DE=kBTð Þ

� �

Fig. 7.9 Fluorescence
spectra of five laser crystals
having d3 electronic
configuration [19]
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where sE and sT refer to s(2E) and s(4T2), respectively, and r = s(2E)/s(4T2) is a
function of DETE, because the fluorescence lifetime of 2E depends on the spin–orbit
coupling; the smaller the DETE, the larger is the component of the wave function of
4T2 level mixing into that of 2E level and so the 2E!4T2 transition has higher
transition probability. Anyway, it is a parameter directly related to tunable laser
properties and necessary to be further investigated.

Starting from the calculation of transition rate by perturbation method, it is
important to calculate the spin–orbit matrix element Un

2Eð Þ	 Hso Un
4T2ð Þ 


. Taking
into account the lattice relaxation, this matrix element takes the following form

Un
2E
� �	 Hso Um

4T2
� � 
 ¼ un

2E
� �	 Hso um

4T2
� � 


vn
2E
� �	 vm 4T2

� �

� Vso vn

2E
� �	 vm 4T2

� �

where u is the wave function of the electron and v is that of the lattice vibration.
The calculation by Struve and Huber in 1985 [32] did not consider overlap integral
between lattice wave functions vn(

2E) and vm(
4T2), so the following result was

obtained

r ¼ 2 1� DETEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Vsoj j2 þDE2

TE

q
0
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It differs significantly from the experimental results. After considering overlap
integral between lattice wave functions, the calculated result will be determined by
Huang–Rhys S factor and phonon energy ℏx. It means that the ratio of fluorescence
lifetime r will be determined by the matrix element of spin–orbit coupling Vso,
phonon parameters S and ℏx. The crystal field wave functions and the matrix
element of spin–orbit coupling Vso depend on the site-symmetry of the chromium
ions. Therefore, in the lower symmetry situation, it is unreasonable to apply the
value of cubic symmetry. The group chain scheme has been used by the authors to
calculate this matrix element according to the site-symmetry of the active ions [33]
and at the same time to adopt the calculation method for the values of S factor and
phonon energy ℏx by a statistical multi-phonon model proposed by K. Huang [34].
Using these results, the ratio of fluorescence lifetime r could be calculated by the
DHGIM model [35], modified DHGIM model [36], and frozen lattice model [36],
according to the following formula

r ¼ Vsoj j2�
X
m

e�S � Sm

E0
T þm�hx� E0

Eð Þ � m!

" #�1

1þ Vsoj j2�
X
m

e�S � Sm

E0
T þm�hx� E0

Eð Þ � m!

" #( )

where m refers to phonon number. It is enough to calculate it from m = 0 to
m = 10; the contribution of larger m numbers can be neglected. The obtained results
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of the matrix element of spin–orbit coupling Vso, Huang–Rhys S factor, phonon
energy ℏx, and the ratio of fluorescence lifetime r are listed in Tables 7.5 and 7.6.

It can be seen that the calculated results are in good agreement with the
experimental data, especially those using the modified DHGIM model. In order to
obtain better agreement with the experimental data, Wojtowicz [36] introduced a
special model in which the lattice is frozen in a position R0 = (R1 + R2)/2, where R1

is the system position when it is in the state of 2E and R2 is the system position
when it is in the state of 4T2. This is obviously an artificial hypothesis that does not
conform to physical reality. The above results show that by using accurate point
group to calculate the spin–orbit coupling matrix element of Vso, and adopting the
correct phonon parameters, it is possible to obtain the results in accordance with the
spectroscopic experiments and absolutely unnecessary to introduce an artificial
model.

Divalent vanadium has the same electron configuration 3d3 as that of the
trivalent chromium but with much weaker crystal field. As a result, the working
wavelength of tunable laser crystal activated by V2 is much longer. Typical
examples are V2+:MgF2 [37] and V2+:CsCaF3 [38], which can emit lasers in
wavelength ranges of 1.24–1.33 lm and 1.07–1.16 lm, respectively, but both
should be operated at 80 K. Owing to their very long fluorescence lifetimes, they
are suitable to be pumped by krypton arc lamps and operated continuously. The
laser efficiency of this kind of systems is low because of the excited state
absorption, especially for the crystal CsCaF3 doped with V2+.

Finally, we would like to mention briefly about Ni2+ and Co2+-doped tunable
laser crystals with 3d8 and 3d7 electronic configurations, respectively [9, 39–43]. As
has been pointed out previously, the 3d8 electronic system has a T-S diagram
similar to that of the 3d2 system but the crystal field strength parameter has an

Table 7.6 Comparing between experimental and calculated results of lifetime ratio for four garnet
crystals

Crystal DETE

(cm−1)
Experimental Calculated s(2E)/s(4T2)

s(2E)/s(4T2) DHGIM Modified
DHGIM

Frozen lattice
model

GSGG 50 2.4 3.5 2.6 1.8

YSGG 350 13.7 15.7 15.4 8.7

GGG 380 16.0 16.4 16.2 10.8

YGG 650 26.1 26.5 26.2 21.0

Table 7.5 Huang–Rhys S factor and phonon energy for four garnet crystals

Crystal YGG GGG YSGG GSGG

S 5.45 5.04 4.40 4.49

ℏx 238.7 252.5 317.8 293.9

226 7 Energy Levels and Spectroscopic Properties of Transition …



opposite sign. Therefore, the laser transition channel of Ni2+:MgF2 crystal with
crystal field parameter Dq/B < 1 (B = 1030 cm−1) is 3T2!3A2. Ni

2+:MgF2 is a
tunable laser crystal studied earliest, which has tunable laser operation at 77 K. This
crystal can be pumped by flash lamp or tungsten filament lamp. Certainly, it is
better pumped by 1.32 lm laser of Nd3+:YAG crystal. It can be tuned in a range of
1600–1700 nm with central wavelength of 1668 nm. Other Ni2+-doped tunable
laser crystal are: Ni2+:KMgF3 (pumped by xenon flash lamp) and Ni2+:MgO
(pumped by 1.06 lm laser of Nd3+:YAG crystal) and Ni2+:GGG (pumped by 1.32
lm laser of Nd3+:YAG crystal).

T-S diagram of Co2+ ions is shown in Fig. 7.10. The energy levels of Co2+ ions
are located in the left part of the vertical dotted line corresponding to Dq/B≅1 in this
diagram, because it has a weak crystal field. The ground state is 4T1 split by crystal
field from spectral term of 4F and its excited states are 4T2,

4T1, and
2E coming from

spectral terms 4F, 4P, and 2G, respectively. Co2+:MgF2 can be tunable lased at
either 77 K (fluorescence lifetime of the upper laser level 4T2 is 1.3 ms) or 299 K
(fluorescence lifetime of the 4T2 is 36 ls) with tunable wavelength range of 1750–
2500 or 1510–2280 nm, respectively [17, 40, 41]. This crystal has good mechanical
and thermal properties, pumped by 1.32 lm laser of Nd3+:YAG crystal. The
optical-optical efficiency of 2050 nm laser at a repetition rate of 2 Hz reaches 33%
at temperature of 282 K [44]. A tunable laser operation of Co2+:KZnF3 in the range
of 1650–2070 nm has been realized by argon ion laser pumping at low temperature
of 80 K [45, 46].

Fig. 7.10 Tanabe-Sugano
diagram for d 7 electronic
configuration in octahedron
position
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7.4 Relative Intensity Analysis of R Line in Ruby
Polarized Absorption Spectrum

Figure 7.11 is a figure of R absorption line of Cr3+:Al2O3 crystal corresponding to
the 4A2!2E transition. It can be seen that the r spectrum is obviously stronger than
the p spectrum.

Theoretical explanation should start with the structure of ruby crystal. Figure 7.12
is the distribution of Cr3+ ions and their nearest neighbor O2− ions in the crystal. The
left picture shows that two of the Cr3+ ions situate between two layers of O2− ions but
there is a certain deviation from the midpoint of the two O2− ion planes. The right
picture is the distribution of O2− andCr3+ ions looking down from the top along the C3

axis of the crystal. It is shown that the vertices of the two triangles above and below the
Cr3+ ion are the six nearest neighbor coordination O2− anions. The sizes of these two
triangles have a little difference and a 4.3° deflection angle, making the position
symmetry of Cr3+ ion decreasing from C3v to C3.
The deviation of Cr3+ ions from the midpoint of the two O2− planes produces T1ua0
odd crystal field potential, while the 4.3° deviation angle of two O2− triangles
results in T2ux0 odd crystal field potential. Owing to the fact that the 4.3° deviation
angle is very small so that the strength of T2ux0 odd crystal field potential is much
weaker than that of the T1ua0 crystal field potential.

Energy levels 2E and 4A2 are different in spin multiplicity and so the
electric-dipole transition between these two levels is spin forbidden in the first-order

Fig. 7.11 Polarized absorption spectra of the 4A2!2E transition for Cr3+:Al2O3 crystal [47]
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approximation. However, owing to the spin–orbit coupling, some components of
4T2 and

4T1 wave functions will be mixed into 2E wave function and result in the
2E to 4A2 electric-dipole transition. To investigate the polarization character of this
transition, the following perturbation matrix elements should be studied

2E HSOj j	
4T1



4T1 lj j	

4A2



E 4T1ð Þ � E 2Eð Þ and
2E HSOj j	

4T2



4T2 lj j	
4A2



E 4T2ð Þ � E 2Eð Þ ð7:21Þ

where HSO is the spin–orbit coupling Hamiltonian and l denotes the operator of
electric-dipole moment. It can be seen from the above matrix elements that the
transition probability is inversely proportional to the square of energy separation
between 2E and 4T1 or between 2E and 4T2. Owing to the fact that the separation
between 2E and 4T1 is four times that between 2E and 4T2, besides the matrix
element of 4T1 lj j	

4A2


is equal to zero; therefore, in the comparison of R line

absorption intensity in different polarization direction, the contribution of the first
matrix element in (7.21) can be neglected. To compare the p and r polarized
intensities of the 2E!4A2 transition induced by the 2E and 4T2 spin–orbit coupling,

it is enough to compare the squares of matrix elements 4T2
	 lz 4A2

 
 2 and
4T2
	 lx;y 4A2

 
 2.
Energy levels 4T2 and 4A2 belong to even parity states. The matrix element of

electric-dipole moment l between them is equal to zero unless their wave functions
are mixed by the wave functions of the electronic configuration 3d24p introduced
by odd crystal field potential Vu. In this case, the electric-dipole matrix element
between 4A2 and

4T2 is

M � 4T2
	 l 4A2

 
 ¼ X
k

4T2
	 l ki kh Vuj j4A2

 E
Ek � E 4T2ð Þ þ

X
k

4A2
	 l ki kh Vuj j4T2

 E
Ek � E 4A2ð Þ ð7:22Þ

Fig. 7.12 The distribution of Cr3+ ions (solid spheres) and O2− ions (hollow spheres) in ruby
crystal
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k denotes the energy levels of odd parity configuration 3d24p. The energy
separation between these states and 4A2 or

4T1 is much larger than that between 4A2

and 4T2. However, the energy difference in the denominator of (7.22) can be
replaced by the average separation DE between energy levels of configuration
3d24p and 4A2 or

4T2. By using
P
k

kj i kh j ¼ 1, it can be obtained

M2 ¼ 4 4A2
	 l� Vu

4T2
 
 2= DEð Þ2 ð7:23Þ

Obviously, the intensity of R line of the transition 2E!4A2 is proportional to M2.
The contribution of odd crystal field potential T1ua0 to the square of p polarized

matrix element A2h jlz � Vu T2j i 2 can be calculated as follows:
Because p polarization is generated by the z component of the electric-dipole

moment, while the function z transform as T1ua0 under cubic group operation, by
using following trigonal basis Clebsch-Gordan coefficient (C-G coefficient) of cubic
group (it can be found in Appendix F)

T1a0T1a0h jA1e1i ¼ �1=
ffiffiffi
3

p
; T1a0T1a0h jT2x0i ¼ �

ffiffiffi
2

p
=

ffiffiffi
3

p

The expression of the product of electric-dipole operator and the odd crystal field
potential operator can be obtained as follows

lz � V T1ua0ð Þ ) z� V T1ua0ð Þ ) T1ua0ð Þ � T1ua0

¼ �1=
ffiffiffi
3

p� �
A1ge1 � �

ffiffiffi
2

p
=

ffiffiffi
3

p� �
T2gx0

According to Wigner–Eckart theorem for point group

C1h c1 OC
c

 C2c2i ¼ Cð Þ�1=2 C1h c1 C2c2Ccj i C1h OC
c

  C2i

where (C) is the dimension of irreducible representation C. Substituting C-G
coefficients A2e2h T2x0T1a0j i ¼ 0 and A2e2h T2x0A1e1j i ¼ 0 into (7.23), we can
obtain

MT1u
p

4A2 !4 T2
� �� �2¼ 0 ð7:24Þ

It is shown that the intensity of p polarized absorption line is zero.
The calculation of the matrix element for the r polarized transition involves the

electronic radius vector in x direction (it can be shown that if the electronic diameter
vector is in y direction, its contribution to the matrix element is zero), its irreducible
component can be expressed as
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T1ua� � T1uaþð Þ=
ffiffiffi
2

p

Using the related C-G coefficients, the product of the electric-dipole operator and
the odd crystal field potential operator can be expressed as

T1ua0 � T1ua� � T1uaþð Þ=
ffiffiffi
2

p
¼ 1=

ffiffiffi
6

p� �
Eguþ � �1=

ffiffiffi
6

p� �
Egu� � �i=2ð Þ �

T1gaþ � �i=2ð ÞT1ga� � �1=
ffiffiffiffiffi
12

p� �
T2gxþ � 1=

ffiffiffiffiffi
12

p� �
T2gx�

C-G coefficient A2e2h T2x�T1a�j i ¼ 1=
ffiffiffi
3

p
can be found in Appendix F, then

Wigner–Eckart theorem shows

MT1u
r

4A2 ! 4T2
� �� �2¼ 1=3ð Þ 4A2 lV T1uð Þk k4T2

	 
 2= DEð Þ2 ð7:25Þ

then to see the contributions of odd crystal field potential T2ux0 to p and r polarized
transition matrix elements. For the p polarization, the product of electric-dipole
operator and odd crystal field potential operator can be expressed as

T1ua0 � T2ux0 ¼ �1=
ffiffiffi
3

p
A2ge2 �

ffiffiffi
2

p
=

ffiffiffi
3

p
T1ga0

By using Wigner–Eckart theorem and related C-G coefficient
A2e2h jT2x0T1a0i ¼ 1=

ffiffiffi
3

p
, the square of transition matrix element is

MT2u
p

4A2 ! 4T2
� �� �2¼ 2=9ð Þ 4A2 lV T2uð Þk k4T2

	 
 2= DEð Þ2 ð7:26Þ

To calculate the contribution of odd crystal field potential T2ux0 to r polarized
transition matrix element, the y direction electronic radius vector should be con-
cerned. Its irreducible component can be expressed as

i T1ua� þ T1uaþð Þ=
ffiffiffi
2

p

Then the product of electric-dipole operator and odd crystal field potential operator
can be expressed using the C-G coefficient

T2ux0 � i T1uaþ þ T1ua�ð Þ=
ffiffiffi
2

p
¼ �1=

ffiffiffi
6

p� �
Eguþ � 1=

ffiffiffi
6

p� �
Egu� � �i=

ffiffiffiffiffi
12

p� �
T1gaþ � �i=

ffiffiffiffiffi
12

p� �
T1ga� � �1=

ffiffiffi
4

p� �
T2gxþ � 1=

ffiffiffi
4

p� �
T2gx�

Similarly, by using Wigner–Eckart theorem and related C-G coefficient
A2e2h jT2x�T1a�i ¼ 1=

ffiffiffi
3

p
, one obtains
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MT2u
r

4A2 ! 4T2
� �� �2¼ 1=9ð Þ 4A2 lV T2uð Þk k4T2

	 
 2= DEð Þ2 ð7:27Þ

Summarize the results obtained above

Mr
4A2 ! 4T2
� �� �2¼ 1=3 4A2 lV T1uð Þk k4T2

	 
 2 þ 1=9 4A2 lV T2uð Þk k4T2
	 
 2h i

= DEð Þ2

ð7:28Þ

Mp
4A2 ! 4T2
� �� �2¼ 2=9ð Þ 4A2 lV T2uð Þk k4T2

	 
 2= DEð Þ2 ð7:29Þ

Consider that V(T1ua0) > V(T2ux0), the following conclusion is obvious

Mr
4A2 ! 4T2
� �� �2

[ Mp
4A2 ! 4T2
� �� �2 ð7:30Þ

Therefore, the experimental fact that the intensity of r polarized absorption
R line is stronger than that of the p polarized absorption R line is completely
demonstrated. In fact, this is also a good explanation of the experimental fact that
the intensity of r polarized 4A2!4T2 absorption line is stronger than that of the p
polarized 4A2!4T2 absorption line. Clearly, this phenomenon comes from the fact
that the main odd crystal field potential of Cr3+ ion in ruby crystal is V(T1ua0). If
deviation angle of two ligand O2− triangles above and below the Cr3+ ion increases,
its p polarized absorption intensity will be stronger.

7.5 Estimation of Trivalent Chromium Ion Spectral
Parameters in Solid-State Laser Materials

In the quality test and evaluation of laser crystals, it is often necessary to estimate
the spectral parameters by the experimental spectra measurement. In these esti-
mations, it is often possible to use relationship between some parameters obtained
by simple spectroscopic measurements to calculate parameters which are originally
difficult to determine or can only be determined by complicated measurements and
calculations. This section will introduce two direct and simple methods for the
calculation of the spectral parameters of the trivalent chromium ion doped in
crystals which have been proposed by the authors [34, 48].

The trivalent chromium ion-doped crystals with weak crystal field are used as
tunable laser crystals; their laser properties to a large extent depend on the crystal
field parameter 10Dq, effective phonon energy ℏx, and Huang–Rhys S factor. For
this ion, the energy Ea(

4A2!4T2) corresponding to the 4A2!4T2 absorption peak is
10Dq (see (7.20)), therefore, crystal field strength Dq can be obtained directly by
spectral measurement. On the other hand, the calculation of effective phonon
energy ℏx and Huang–Rhys S factor is much more troublesome. It can be obtained
either by using the measurement of line shape curve to fit with the theoretical line
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shape function or by comparing the temperature dependence of the linewidth
obtained in experiment with the expression of (6.55). Anyway, the results obtained
are only some kinds of approximate phenomenological parameters, because the
formulas used are introduced by phenomenological model. Actually, by almost the
same phenomenological model and the same order of approximation, the above
results can be obtained in a more direct and simple way. This is the main idea of the
method introduced in this section.

Under point-charge approximation, crystal field parameter 10Dq can be
expressed as [3]

10Dq ¼ 10
6

Ze2 r4
	 


3d=R
5

� �
ð7:31Þ

Owing to the fact that the amplitude of lattice vibration dR satisfies the relation of
dR/R  10−2, it can be assumed that Z and < r4 > 3d have not any substantial
variation in the process of lattice vibration. It means that the crystal field energy
E depends on the fifth power of R. Consider all the interactions including point
charge Coulomb interaction, the general dependent relation of the crystal field
energy will take the following form:

E ¼ AR�n ð7:32Þ

where A is a constant, n assumes the value of 5 in point-charge approximation and a
value between 4.5 and 5 in general. By (7.32) it is obvious

dE
dR

¼ �nE=R ð7:33Þ

The energy variation dE in the process of electronic transition also satisfies the
same relation

ddE
dR

¼ �ndE=R ð7:34Þ

On the other hand, by assuming a single-mode model as that adopted by the
configuration coordinate model, we discuss in fact the interaction of the electrons in
the central active ion with a “breathing mode” vibration of six ligand ions, which
has A1g symmetry. This local structure consists of six linear oscillators; each has an
energy change of dE/6 during the electronic transition. If the variation of config-
uration coordinates of any of these oscillators during the electronic transition is
denoted by Dji, then the interaction force generated by the transition for each
oscillator can be expressed as
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F ¼ � 1
6
ddE
dR

¼ M �x2Dji ð7:35Þ

where M refers to as the mass of the ligand ion. According to the definition of
Huang–Rhys factor and the fact that there are six oscillators in the model discussed,
noting that the mass of oscillator has been dealt with as a unit in the formula of S in
Chap. 6, it is obvious

S ¼ 3M �xD2
ji=�h ð7:36Þ

Therefore, the following relation will be obtained by (7.34), (7.35), and (7.36)

S ¼ n2 dEð Þ2
12�hMR2 �x3 ð7:37aÞ

or

S�h�x ¼ n2�h2

12MR2

dE
�h�x

� �2

ð7:37bÞ

Equation (6.54) shows that the Stocks shift corresponding to the difference of
the peak of the absorption spectrum Ea and that of the emission spectrum Ee is equal
to the double of S�h�x, and dE in the above equation is the peak of the absorption
spectrum Ea, then

�h�x ¼ Ea
n
R

� � �h2

6M Ea � Eeð Þ
� �1=2

ð7:38Þ

Associating with (6.55), the full-width at half-maximum of the emission line can be
expressed as

W ¼ 4 ln 2ð Þ Ea � Eeð Þ�h�x coth �h�x=2kBTð Þ½ 	1=2 ð7:39Þ

Equations (7.32)–(7.39) are really introduced by simple single-mode approxi-
mation, which is the same as that has been adopted in the performance investigation
of tunable laser crystals. Therefore, one can use these formulas to describe per-
formances of tunable laser crystals without considering whether they have real
microcosmic meaning, but remembering that they are only phenomenological
parameters. Actually, electron–phonon interaction in laser materials is indeed
multi-mode and multi-frequency, and the phonon state density of different mode is
always different. They are still phenomenological and even two or three modes are
used to describe the spectral properties.

Ducilos et al. [49] have shown that for Cr3+:Al2O3 at a pressure as high as 35
GPa, n in (7.32) increases with R. Therefore they have assumed that n/R is a
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constant within a certain range of pressure. For oxides and fluorides, it can be
assumed that n/R = 2.25 � 108 cm−1. The mass of oxygen ion is
MO = 2.7 � 10−23 g and that of fluorine ion is MF = 3.2 � 10−23 g, then the
phonon energy of effective single mode for the transition between electronic levels
4A2 and

4T2 can be expressed as, for oxides

�h�x  2:25Ea 0:3456= Ea � Eeð Þ½ 	1=2 ð7:40Þ

for fluorides

�h�x  2:25Ea 0:2910= Ea � Eeð Þ½ 	1=2 ð7:41Þ

By means of (7.39), (7.40), and (7.41), the effective phonon energy and width of
the spectral line in single-mode approximation can be obtained by the data of the
peak positions of the absorption and emission spectra. By using (6.54), (7.40), and
(7.41), the effective phonon energy and Huang–Rhys factor can be calculated.
Compared with the results obtained by other methods, it is evident that the approach
proposed is suitable for the investigation of the performances of laser crystal. This
comparison is shown in three tables followed.

The calculated results and the comparison with the experimental data of the
linewidth are given in Tables 7.7 and 7.8. The relative errors for oxide and fluoride
crystals are all less than 10% in the 23 examples given, except for those cases in
which disorders or second centers appear in the crystals. Comparing the effective
phonon energy and Huang–Rhys factor calculated by the direct method proposed
with those obtained by other methods published in the literature, it can be seen that
the direct method proposed also lead to very good results, which are given in
Table 7.9.

It is simple to measure the width of the spectral line. By using the direct method
proposed to calculate linewidth and comparing with the experimental result, it is
possible to find if there is disorder structure or multi-center in crystals. In this case,
the calculated linewidth will be much smaller than the measured value obtained by
the experiment. Certainly, to obtain a correct experimental data of linewidth, the
response curve of the spectrometer should certainly be corrected.

Table 7.7 Comparison of calculated results with experimental data of emission linewidth for the
transition 4T2!4A2 of Cr

3+ ions in fluoride crystals

Crystal T (K) Ea

(cm−1)
Ee

(cm−1)
W Cal.
(cm−1)

W Exp.
(cm−1)

Ref. Error (%)

KZnF3 80 14858 12934 1482 1521 [50] 2.6

ScF3 14 14280 12028 1510 1495 [51] 1.0

LiSrAlF6 20 15676 12821 1679 1690 [52] 1.2

LiSrGaF6 295 15873 12054 2237 2438 [53] 8.2

Na3Ga2Li3F12 18 16069 13313 1685 1740 [54] 3.2
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There is another simple method to calculate effective phonon energy and
Huang–Rhys factor if one has correct linewidth data. In the following, the calcu-
lation method without simplified supposition of (7.35) will be introduced.

The detailed description of this method can be referred to [34]. The main basis of
this method is (6.54) and (6.55), but it technically introduces a ratio c

Table 7.8 Comparison of calculated results with experimental data of emission linewidth for the
transition 4T2!4A2 of Cr

3+ ions in oxide crystals

Crystal T
(K)

Ea

(cm−1)
Ee

(cm−1)
W Cal.
(cm−1)

W ExP.
(cm−1)

Ref. Error
(%)

Al2(WO4)2 300 15229 12157 2073 2100 [24, 55] 1.3

ZnWO4 300 13766 10278 2117 2105 [36] 0.6

ZnWO4 9 13500 10145 1693 1588 [56] 6.6

YAl3(BO3)4 300 16949 13513 2215 2127 [57] 4.1

La3Ga5SiO4 300 15748 r:11395 2406 2127 [26] 1.3

300 15748 p:11549 2370 2525 [26] 6.1

YGG 300 16293 13691 1971 1900 [32] 1.5

GGG 300 15963 13617 1886 1900 [32] 0.7

YSGG 300 16128 13332 2022 2100 [32] 3.7

LGG 300 14794 11758 2051 2100 [32 2.3

GSGG 300 15631 12993 1963 2000 [32] 1.9

177 15430 13506 1606 1558 [58, 59] 3.1

89 15430 13624 1538 1429 [58, 59] 7.6

GAGG 300 15600 13444 1817 1732 [58, 59] 4.9

100 15600 13717 1576 1514 [58, 59] 4.1

Ca3Ga2Ge4O14 300 16000 10989 2560 3645 [50] 29.7a

Sr3Ga2Ge4O14 300 16260 11905 2420 4085 [50] 40.8a

Sc2O3 14 15200 11875 1792 2329 [51] 23.0b

aThere is disorder for the crystal field of chromium ions, bthere is two chromium centers

Table 7.9 Comparison of the results of the method proposed with those obtained by other
methods for effective phonon energy and Huang–Rhys factor of the transition 4T2!4A2 of Cr3+

ions in fluoride crystals

Crystal T Ea Ee Results of this
method

Results by other
method

Ref.

(K) (cm−1) (cm−1) S �h�x
(cm−1)

S �h�x
(cm−1)

K2NaScF6 295 15600 13100 3.30 379 3.95 380 [60]

K2NaGaF6 295 16000 13600 3.03 396 3.98 378 [60]

Na3Ga2Li3F12 18 16069 13313 3.7 372 3.5 400 [54]

ScF3 14 14280 12028 3.0 367 3.0 380 [51]
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c ¼ W2

DEs=2
ð7:42Þ

By means of (6.54) and (6.55), we have

c ¼ 8 ln2ð Þ�h�xcoth �h�x
2kBT

� �
ð7:43Þ

This method requires the experimental data of the peak positions of the
absorption and emission spectra as well as the full-width at half-maximum of the
emission line W. From the experimental data mentioned, c can be calculated by
(7.42). As shown in (7.43), the phonon energy �h�x has a one-to-one corresponding
relation between c and phonon energy �h�x. It is easy to make a curve or to list a
table by this equation and then from the c value one can determine phonon energy
�h�x, although it is difficult to express �h�x as an analytic function of c. Then S factor
can be found by (6.54). It has indicated that �h�x and S factor obtained by these two
methods introduced are almost identical.

The calculation in this section shows that for the strong electron–phonon system,
the single-mode approximation is suitable to describe shape of spectral line
including phonon side band, although it is a rough model. In view of the fact that
the phonons have different frequencies, Huang Kun has proposed a statistical
multi-phonon model [61]. According to this model, the author designed a method
for measuring the phonon energy and Huang–Rhys factor by using measured
spectral data [34]. However, from the practical point of view, the single-mode
approximation is enough for the study of laser crystal.

Of course, the single-phonon model has a lot of limitations. For example, when
the spectral measurement can resolve zero-phonon line and a certain order of
phonon side band, their intensity ratios cannot be always predicted by the single
mode. When active ions situated in the positions with central symmetry, the
electric-dipole transition within the same configuration is forbidden but the lattice
vibration breaks this central symmetry and introduces forced electric-dipole tran-
sition. In this case, the single phonon line but not the zero-phonon line is induced
by electric-dipole transition, and so the zero-phonon line is much weaker.

Further investigation shows that the intensity of electron–phonon coupling
depends on the concentration of the active ions. Auzel [62] has reported the
increase of Huang–Rhys S factor along with the concentration of the active ions.
Physically, it can be interpreted as the range of electron interaction increases with
the concentration of the active ion; it’s like the wave function of electrons with a
larger range. When the concentrations of Ni2+ are 2 and 10%, the S factor will be
0.5 and 2.25, respectively, for Ni2+:MgF2 crystal.
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Chapter 8
Non-radiative Transition Inside Ions

One of the important effects of lattice vibration on spectral properties of active ions
is the emission or absorption of phonon between the electronic energy levels
without the emission or absorption of photon. This is the so-called non-radiative
transition. In this chapter, the non-radiative transition process discussed will not
involve the energy transfer between ions which will be discussed in the next
chapter. In solid-state laser materials, one of the non-radiative transition process is
the transfer of an active ion energy to lattice vibration; thus its fluorescence effi-
ciency is reduced, which can be expressed as

gf ¼
Wr

Wr þWnr

where Wnr refers to radiative transition probability and Wr denotes non-radiative
transition probability. Obviously, a high non-radiative transition probability leads to
low fluorescence efficiency. On the other hand, non-radiative transition is also a
useful process for laser materials, because the active ions that transit from pump
band to upper laser level and from lower laser level decay to ground state in a
four-level system should rely on this process. There are extensive volume of papers
and many monographs published dealing with this process since the 1950s, for
example, the papers of Huang and Rhys [1], Perlin [2], Riseberg and Weber [3],
Perlin and Kaminskii [4], Schuurmans and Dijk [5], Auzel [6], Hagston and
Lowther [7], and Huang [8, 9] as well as monographs of Englman [10], Stoneham
[11], and Fong [12]. Although many works in this area have been reported, the
study of this high-order quantum process is still immature. We cannot give a
detailed theoretical description on this process but can introduce some knowledge
related to the spectroscopic properties of solid-state laser materials and focus on the
study of weak electron–phonon coupling system such as rare earth ions in the
materials.

In principle, there is a process where the electron from a lower energy level
transits to a higher energy level and absorbs energy from lattice system, but the
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probability is very low especially when the energy separation between high and low
energy levels is larger than that of a few phonons, so the probability can be
neglected. In the language of thermodynamics, the process of energy transfer from
electronic system with high order to lattice vibration system with low order is
irreversible. The irreversibility is related to the increase of system entropy. In order
to have a deep understanding about this problem, readers can refer to the book
published by Fong [12], in which the relaxation processes including multi-phonon
non-radiative process are dealt with by statistical theory. The book written by
Englman [10] also discussed this problem.

The process mentioned above is a multi-phonon one and will be dealt with by
the same theoretical model as that adopted in Chap. 6, considering it as a lattice
relaxation process excited by non-adiabatic interaction.

8.1 Introduction of Non-radiative Transition Matrix
Elements

In the development process of non-radiative transition theory, three different
methods have been adopted to calculate the matrix element of non-adiabatic
operator, that is, Condon approximation, non-Condon approximation, and static
coupling approximation. The calculation of some authors in earlier time has shown
that the calculation result of non-Condon approximation is higher by 2–3 orders of
magnitude than that of the Condon approximation. For the situation of
single-frequency mode, the transition probabilities calculated by these two
approximations differ by p2 times (p is the phonon number emitted in the transi-
tion). Thereafter, the calculation of static coupling approximation has also shown
that its result is higher than that of the Condon approximation by several orders of
magnitude. In 1980s, K. Huang [8, 9] analyzed different approximations in the
calculation of non-radiative transition probability. By using only the non-diagonal
part of electron-phonon interaction H0

eL ¼PP
i6¼j jj i jh jHeL ij i ih j while assuming a

special adiabatic electronic wave function

ui xð Þ ¼ u0
i xð Þþ

X
i

jh jHeL ij i
W0

i �W0
j þ ih jHeL ij i � jh jHeL jj ið Þu

0
j xð Þ

a non-radiative transition matrix element the same as that of the static coupling
theory was obtained [8].

Commutation rule of quantum mechanics had been used by the author [13] to
transform the matrix elements of non-adiabatic operator in Condon approximation.
In this way, a non-radiative transition matrix element the same as that of the static
coupling theory also was obtained without assuming an explicit function expression
of the electronic wave function at the beginning of discussion. This method will be
described in the following.
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The Hamiltonian of the electronic wave function can be expressed as follows

He ¼ Te þVee þVen ð8:1Þ

In the adiabatic approximation, the wave function of electron-phonon system can be
expressed as w(r, R) = U(r, R)u(R), where U(r, R) is the electron wave function and
u(R) is the phonon wave function. By using the Condon approximation, after
expanding the electronic wave function to a power series of the amplitude R of
lattice vibration, the terms of Rn with n � 2 in the expansion expression can be
neglected. Therefore, the first term of the non-adiabatic operator of (6.6) is equal to
zero. If Hnr denotes the non-adiabatic interaction, then its effect on the wave
function can be written as

HnrW r;Rð Þ ¼ �
X
a

�h2

Ma

@

@Ra
U r;Rð Þ @

@Ra
u Rð Þ

If one uses normal coordinates Q as that used in the literature [8, 9], then

HnrW r;Qð Þ ¼ �
X
k

�h2
@

@Qk
U r;Qð Þ

� �
@

@Qk
u Qð Þ

� �
ð8:2Þ

where Wðr;QÞ ¼ Uðr;QÞuðQÞ, u(Q) is a continued product of vibrational wave
functions corresponding to a series of normal vibrational modes.

According to the golden rule in quantum mechanics, the transition probability
can be expressed as

Wnr ¼ 2p
�h
Av
m0

X
m

fm Hnaj jim0h ij j2d Eim0 � Efm
� � ð8:3Þ

The above formula has been summed over different final vibrational states and
averaged over different initial vibrational states. For the sake of simplicity, it is
assumed that in the electronic initial state, the ions are populated in the zero
vibrational state m′ = 0. If the final state density complying with the law of energy
conservation is q(E), then the non-radiative transition probability can be expressed
as

Wnr ¼ 2p
�h

fmh jHna i0j ij j2q Eð Þ ð8:4Þ

It is necessary to further investigate the coordinate derivative of the electronic
wave function before substituting the Hamiltonian of (8.2) into (8.4) and calculating
the transition probability. Let
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rQkU r;Qð Þ ¼ @

@Qk
U r;Qð Þ

The electronic wave function U(r, Q) is an eigenfunction of He expressed by (8.1).
The first two terms of He involves only electronic coordinates and commute with
rQk , therefore

rQk ;He
� �

Ui ¼ rQkHeUi r;Qð Þ � HerQkUi r;Qð Þ
¼ rQkVenUi r;Qð Þ � VenrQkUi r;Qð Þ
¼ rQkVenð ÞUi r;Qð Þ

On the other hand

HeUf r;Qð Þ ¼ Ef eð ÞUf r;Qð Þ; HeUi r;Qð Þ ¼ Ei eð ÞUi r;Qð Þ ð8:5Þ

where Ef(e) and Ei(e) stand for the energy eigenvalues of the final and the initial
electronic states, respectively. Therefore

f rQk ;He½ ��� ��i	 
 ¼ Ei eð Þ � Ef eð Þ� �
f rQk

�� ��i	 
 � DE eð Þ f
@

@Qk

����
����i

 �
¼ f rQkVen

�� ��i	 


and so

f
@

@Qk

����
����i

 �
¼ 1

DE eð Þ f
@

@Qk
Ven

����
����i

 �
ð8:6Þ

where ij i and hf j are the bra and ket of the initial and final electronic wave func-
tions, respectively and DE(e) = Ei(e) − Ef(e). The lattice wave functions satisfy the
following equations

HLuim0 Qð Þ ¼ Eim0 pð Þuim0 Qð Þ; HLufm Qð Þ ¼ Efm pð Þufm Qð Þ ð8:7Þ

where the lattice Hamiltonian is

HL ¼
X
k

1
2

��h2
@2

@Q2
k

þx2
kQ

2
k

� �
�
X
k

1
2
P2
k þx2

kQ
2
k

� �

and Eim′(p) and Efm(p) are the eigenenergy of HL, that is, the energy of lattice
system in the states im′ and fm. One can find the following commutation relation in
quantum mechanics [14]

f Pð ÞQ� Qf Pð Þ ¼ �i�h
@

@P
f Pð Þ ð8:8Þ
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If

f Pð Þ � TL ¼
P

k P
2
k

2

Except TL, other terms in the lattice Hamiltonian HL commute with Q and so we
have

HLQk � QkHL ¼ �i�h
@

@Pk
f ¼ �i�hPk ¼ ��h2

@

@Qk
ð8:9Þ

Calculating the matrix element of operator (8.9) between initial and final
vibrational states and using (8.7), then

ufm Qð Þ @

@Qk

����
����uim0 Qð Þ

 �
¼ � 1

�h2
DE pð Þ ufm Qð Þ Qkj juim0 Qð Þ	 
 ð8:10Þ

where DE(p) = Efm(p) − Eim′(p) is the energy difference between final and initial
vibrational states. The d function in (8.3) requires that the process should keep the
energy conservation, that is

Ef eð ÞþEfm pð Þ ¼ Ei eð ÞþEim0 pð Þ

or

DE pð Þ ¼ DE eð Þ

Consequently, after substituting (8.6) and (8.10) into (8.2), one can obtain the
following relation

Wfm r;Qð Þ Hnaj jWim0 r;Qð Þ	 
 ¼X
k

Wfm r;Qð Þ rQkVen � Qk

�� ��Wim0 r;Qð Þ	 
 ð8:11Þ

where Wjn r;Qð Þ ¼ Uj r;Qð Þujn Qð Þ. Expanding Ven in terms of Qk, it can be
obtained

Ven ¼ V0
en þ

X
k

@Ven

@Qk

����
Qk¼0

Qk þ
X
k

@2Ven

@Q2
k

�����
Qk¼0

Q2
k þ � � � ð8:12Þ

Obviously, rQkVen ¼ @Ven=@QkjQk¼0, by (8.11) one has

Wfm r;Qð Þ Hnaj jWim0 r;Qð Þ	 
 ¼ Wfm r;Qð Þ
X
k

@Ven=@QkjQk¼0Qk

�����
�����Wim0 r;Qð Þ

* +

¼ Wfm r;Qð Þ HeLj jWim0 r;Qð Þ	 
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In the above matrix element, HeL ¼P
k
@Ven=@QkjQk¼0Qk , it has the same expres-

sion as the HeL expression given by Kun Huang, in which @Ven=@QkjQk¼0 is
equivalent to uk(x) in (3.2.1) of reference [9]. It is a function that depends only on
the electronic coordinates.

If the electronic wave function takes the zero approximation term in its
expansion in terms of the vibrational coordinates, that is, it depends only on
electronic coordinates, and then the result obtained is the same as that of the static
coupling approximation

Uf ðrÞufinðQÞ HeLðQÞj jUiðrÞuim0 ðQÞ	 

It shows that the simple way in the calculation of the non-radiative transition

probability is to use commutation rule in quantum mechanics to transform the
non-adiabatic operator at first and then substitute the electronic wave function and
electron–phonon interaction potential. In this procedure, it is impossible to
underestimate the non-radiative transition probability, although the Condon
approximation is adopted for the electronic wave functions. Peuker et al. [15] also
showed that the non-radiative transition matrix element obtained by non-Condon
approximation and static coupling approximation can also be obtained by Condon
approximation.

8.2 Promoting Mode and Accepting Mode
in Non-radiative Transition Process

A further expression for non-radiative transition probability can be obtained by
(8.2) and (8.4)

Wnr ¼ 2p
�h

X
k

�h2Lkfi ufm

	 �� @

@Qk
ui0j iG

�����
�����
2

q Eð Þ ð8:13Þ

The concepts of accepting mode and promoting mode are introduced to describe
different effects of the vibrational modes. The product of matrix elements Lkfi ¼
Uf ðr;QkÞ
	 ��@=@Qk Uiðr;QkÞh jj i and ufm @=@Qkj jui0

	 

is not equal to zero in pro-

moting mode and so it can stimulate the transition, which are labeled by index k. On
the other hand, accepting mode cannot stimulate the transition but can receive
energy in the non-radiative transition process. By the discussion in Chap. 6, because
of the lattice relaxation, the product of the overlap integral G ¼Qk ufmk ui0kj	 


is
non-zero. The factor G is called accepting mode factor and k is the index of
accepting mode.
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In (8.13), there is a transformation between normal coordinates Qk and lattice
coordinates Rn

Lkf ¼ f
@

@Qk

����
����i

 �
¼
X
n

Cnk f rRnj jih i ð8:14Þ

where Cnk is the transformation coefficients between the matrix elements of lattice
vibrational coordinates and those of normal coordinates. It should be noted that
although (8.14) is a first-order perturbation expression, the non-radiative transition
probability is a small quantity of 2p-order

Wnr ¼ O Hnrj j2p
� �

This is due to the fact that, as pointed out by Englman [10], the wave functions have
been “renormalized” by the lattice vibration and so

G ¼
Y
k

ufnk

	 ��ui0ki ¼ O Hnrj jp�1
� �

Therefore, p phonon non-radiative transition is still a p-order quantum process.
The vibrational wave function un of the nth excited state with phonon frequency

xk (6.42) can be rewritten as

un ¼
xk

p �h

� �1=4 1ffiffiffiffiffiffiffiffiffi
2nn!

p e�
1
2
xk
�h Q

2
kHn

ffiffiffiffiffiffi
xk

�h

r
Qk

� �
ð8:15Þ

By using (6.44), it is easy to show that in the condition of m = 1, Dk ! 0 (Sk ! 0),

/fm @=@Qkj j/i0

	 
�� ��2 reaches its maximum value at xk/2�h. It shows that the pro-
moting modes are those with Huang–Rhys factor Sk ! 0. However, Sk ! 0 means
that the corresponding modes have a minimum value of @Ven=@Qk. The optical
modes correspond to the vibrations in which the movement directions of opposite
charge particles are opposite and the acoustic modes correspond to the vibrations in
which the movement directions of opposite charge particles are the same.
Obviously, the acoustic modes have the minimum variation of Ven and so the
promoting modes should be acoustic modes. The non-radiative transition proba-
bility can be written as

Wnr ¼ p�h2
X
k

Lkfi

��� ���2xkG
2q Eð Þ ð8:16Þ

The summation is over all the promoting modes.
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8.3 Non-radiative Transition Probability for Weak
Coupling Systems

By using overlap integral of lattice vibrational functions obtained in Chap. 6, it is
easy to show that the accepting mode factor is G2 ¼ Sp1e�S=p1!, where S is
Huang-Rhys factor and p1 is the total phonon number that the accepting mode
consumed, while the phonon number emitted in the non-radiative transition process
is p = p1 + 1. If the frequencies of the promoting modes and the accepting modes
are xk and xm, respectively, and the separation between two electronic energy level
is DE, then p1 = (DE − hxk)/hxm. For multi-phonon non-radiative transition, p1 is a
larger number and so by the Stirling approximation formula

p1! ¼ pp11 2pp1ð Þ1=2exp �p1ð Þ, the following expression can be obtained

Wnr ¼ p�h2ffiffiffiffiffiffi
2p

p
X
k

Lkfi

��� ���2xke�Sq Eð Þ
" #

exp �p1bð Þ ð8:17Þ

where

b ¼ p1 þ 1=2
p1

� �
ln p1 � ln S� 1; p1 ¼ DE � �hxk

�hxm

Substituting the expression of b and p1 to (8.17), the expression known as
exponential energy gap law of the non-radiative transition probability resulted as
follows

Wnr ¼ Wexp �aDEð Þ ð8:18Þ

where

a ¼ b=�hxm; W ¼ p�h2ffiffiffiffiffiffi
2p

p
X
k

Lkfi

��� ���2xke
�Sq Eð Þ

" #
exp

xk

xm;
b

� �

b in the above formula is in fact a slow variation function of p1, and W and a are
also not the constants. Therefore, (8.18) is only an approximate energy gap
exponential relation of the transition probability. The relation between b and p1 can
be tabulated as:

S = 0.1, b(10)/b(2) = 1.71

P1 2 3 4 5 6 7 8 9 10

b 2.17 2.58 2.86 3.07 3.2 3.39 3.51 3.62 3.72

S = 0.2, b(10)/b(2) = 2.05

P1 2 3 4 5 6 7 8 9 10

b 1.48 1.89 2.17 2.38 2.5 2.76 2.82 2.93 3.03
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It can be seen that only for the system with smaller value of S factor (weak
coupling system), the assumption of constant b is reasonable. Therefore the
exponential energy gap relation of non-radiative transition probability is only valid
for the weak electron–phonon coupling system.

Schuurmans et al. [5] modified the above relation to put all the variables
depending on p1 into exponential function. Writing the total product of all the terms
depending on p1 in (8.17) as

exp � p1 � 1ð Þb0½ �

then

b0 ¼ 2p1 þ 1
2 p1 � 1ð Þ ln p1 �

p1
p1 � 1

ln S� p1
p1 � 1

ð8:19Þ

The detailed calculation shows that compared with the variation of b, b′ is a much
slower function of p1

S = 0.1

p1 2 3 4 5 6 7 8 9 10

b′ 4.34 3.88 3.83 3.84 3.89 3.96 4.01 4.07 4.15

S = 0.2

p1 2 3 4 5 6 7 8 9 10

b′ 2.95 2.84 2.90 2.98 3.06 3.14 3.22 3.30 3.36

Note that b and b′ increase with p1. It means that the decrease of non-radiative
transition probability is faster than that predicted by the exponential energy gap law.

Suppose a0 ¼ b0=�hxm, then non-radiative transition probability has the follow-
ing form

Wnr ¼ W 0exp �a0 DE � �hxk � �hxmð Þ½ � ð8:20Þ

where

W 0 ¼ p�h2ffiffiffiffiffiffi
2p

p
X
k

Lkfi

��� ���2xke
�Sq Eð Þ

" #

W′ is a quantity independent of p1 and DE, and a0 is substantially independent of
DE. Therefore, (8.20) is a more accurate exponential relation of the non-radiative
transition probability with the energy gap. It should be pointed out that the above
formula has a bit difference from that given by Schuurmans et al. [5]. The effective
energy gap in the above formula is DE minus one phonon energy of accepting mode
and another of promoting mode instead of two phonon energies of accepting
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modes. Generally, the phonon energy of accepting mode is different from that of
promoting mode. However, as shown in (8.20), the high-energy acoustic phonons
and the high-energy optical phonons both have greater contribution to the
non-radiative transition, so long as Lkfi is non-zero.

Equation (8.20) can be written in the form of (8.18), if one puts the factor of
exp[a0 �hxk þ �hxmð Þ] intoW′. Nevertheless, the pre-exponential factor in (8.18) has a
strong dependence on the host crystals. As pointed out by Schuurmans et al. [5], the
pre-exponential factor in (8.18) can have a variation of 4–5 orders of magnitude for
different host crystals or glasses doped with the same rare earth ions but the vari-
ation in the pre-exponential factor in (8.20) is within one order of magnitude. It
should be pointed out that the Huang–Rhys factor S is dependent on the kinds of
rare earth ions, although the difference of S factors is within a factor of two.
Consequently, strictly speaking, the values of b′ and a′ for different kinds of rare
earth ion in the same host are different.

The above exponential energy gap law can be used to describe the transition
probability of multi-phonon non-radiative process involving more than five pho-
nons, although the demonstration is limited to the processes of 3–5 phonons. The
reader can refer to the article published by Riserberg and Weber [3] to know more
about this problem. It should be admitted that the multi-phonon non-radiative
process is a complicated high-order quantum process and it is difficult to describe
all its characteristics by any one approximate theoretical method. In the description
of the exponential energy gap law of non-radiative transition probability, the per-
turbation theory introduced by Hagston and Lowther [7] should be mentioned.
According to their analysis, non-radiative transition resulted from the following
electron–phonon interaction potential

VeL ¼ V1eþV2e
2 þ � � � Vne

n þ � � � ð8:21Þ

where

Vn ¼ @nVeL

@Qn

It should be noted that in this theory the zero-order electronic wave functions are
the eigenfunctions of Hamiltonian that do not include VeL and the phonon wave
functions are independent of the electronic states, that is, without lattice relaxation
and non-adiabatic interaction. The contributions of p-order perturbation of
first-order term V1 and the first-order perturbation of p-order term Vp to the prob-
ability of p phonon transition are compared [7]. Their results showed that the major
contribution is due to the first-order perturbation of p-order term and the transition
probability takes the following form
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Wp
nr ¼

2p
�h

f Vp

�� ��i	 
�� ��2 m epj jnh ij j2d Ei � Ef � p�hxeff
� � ð8:22Þ

In this formula, �hxeff is the effective phonon energy. Their calculation showed that
the ratio of interaction matrix element of a p-phonon transition process to that of a
(p − 1)-phonon transition process is varied in a small range, that is

2� a Vp

�� ��b	 

a Vp�1

�� ��b	 

�����

�����
2

� 4

In the following calculation this ratio is approximately assumed to be 3. Therefore,
the ratio of transition probability of p-phonon processWp

nr to that of a (p − 1)-phonon
transition process Wp�1

nr can be approximately considered as a constant

Rn ¼ Wp
nr

Wp�1
nr

¼ a Vp

�� ��b	 

a Vp�1
�� ��b	 


�����
�����
2

e2
	 
 	 3

�hxD

50qv5
ð8:23Þ

In the calculation of above formula, (6.29) for phonon state density (neglecting the
difference between the velocities of transverse and longitude acoustic waves) and
the strain expression of the linear combination of creation operator and annihilation
operator have been used. The integral over phonon frequency is from 0 to Debye
frequency xD. Obviously, the magnitude of Rn depends only on the variety of host
materials. Consequently

Wp
nr ¼ W0

nrRn ¼ W0
nrexp �aDEð Þ ð8:24Þ

If one takes a ¼ � lnR=�hxeff , then a depends only on the type of host material.
It must be pointed out that it is hard to see the approximate degree of the

exponential law by this analysis; the problem is it is difficulty to estimate the error
of transition probability introduced by assuming a constant ratio of

a Vp

�� ��b	 
�
a Vp�1

�� ��b	 
�� ��2 that is difficult to be estimated. Using the density matrix
method of statistical theory, Fong [12] introduced, in weak coupling condition, a
formula for non-radiative transition probability as follows

Wnr ¼ Aexp �pcp
� � ð8:25Þ

where p = DE/hxk. The pre-exponential factor A is composed of the square of
matrix element ih j@V=@Qk fj ij j2 and the averaged phonon number factor ð1þ �nÞp
while cp is a slow variation function of p

cp ¼ ln
f

2Lkg2k

� �
þ 1

2p
ln f =2ð Þ 1þ 1þ fð Þ�2

h in o
� f
2p

� 1
p
ln

f 2þ fð Þ
4Lkg2k

� �
ð8:26Þ
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where

f ¼ ðp� 3Þþ ðp� 1Þ2 þ 4
h i1=2

Similar to Huang–Rhys factor, Lkgk
2 is a quantity representing the strength of

electron–phonon coupling. The strict energy gap exponential law requires that cp
should be a constant. However, it can be seen from (8.26) and in the following table
that cp is a slow variation function of p.

Lkgk
2 = 0.04

p 3 4 5 6 7 8 9 10 15

c 1.68 2.27 2.80 3.02 3.29 3.51 3.69 3.85 4.44

Lkgk
2 = 0.02

p 3 4 5 6 7 8 9 10 15

c 2.14 2.79 3.25 3.60 3.88 4.11 4.31 4.48 5.09

Obviously, the result is the same as presented previously that the non-radiative
transition probability increased faster than that predicted by the exponential law,
when the energy gap narrows down. However, it has been pointed out by many
review articles, for example Riseberg and Weber [3], that the exponential law is
useful at least for the estimation of the orders of magnitude of non-radiative tran-
sition probability. Figure 8.1 is a typical example showing the relation of
non-radiative transition probabilities versus energy gap for five laser crystals.

The comparisons between experimental data and those of the calculated results
given by Perlin and Kaminskii [4] for different rare earth ions in crystal YAP and
YAG are shown in Fig. 8.2a, b.

The following is some reference values for the parameters in (8.24) [16].

Host W0 (sec−1) a (cm) �hxeff cm�1ð Þ
YAG 9.7�107 3.1�10−3 	700

2.235�108 3.5�10−3 	700

YAP 5.0�109 4.6�10−3 550–600

6.425�109 4.69�10−3 	600

Y2O3 2.7�108 3.8�10−3 430–550

1.204�108 3.53�10−3 	600

LiYF4 3.5�107 3.8�10−3 	400

6.4�107 3.6�10−3 	560

LaF3 6.6�108 5.6�10−3 	350

3.966�109 6.45�10−3 	305

SrF2 3.1�108 4.5�10−3 	360

3.935�108 4.6�10−3 	350

LaCl3 1.5�1010 1.3�10−2 	260

3.008�1010 1.37�10−2 	250
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Fig. 8.1 Non-radiative transition probability versus energy gap for laser crystals of YAlO3, Y2O3,
LaF3, LaCl3, and LaBr3 [3]

Fig. 8.2 a Non-radiative transition probabilities of a series of rare earth ions in crystal YAP at
T ! 0 K; b non-radiative transition probabilities of a series of rare earth ions in crystal YAG at
T ! 0 K
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The phonon energy of borate crystals or glasses reaches 1400 cm−1. Their
non-radiative transition probabilities are much higher than those of other crystals
and glasses. As an example, for YAl3(BO3)4 (YAB) crystal, W0 = 8.0 � 108 s−1,
a = 2.1�10−3 cm, �hxeff ¼ 1400 cm�1. These three parameters for four kinds of
glasses are shown as follows [16]:

Host W0 (sec−1) a (cm) 	1200 �h xeff (cm
−1)

Phosphate glass 5.4�1012 4.7�10−3

Silicate glass 1.4�1012 4.7�10−3 	1100

Germanate glass 3.4�109 4.9�10−3 	900

Fluoride glass 1.6�1010 5.2�10−3 	500

8.4 Parallelism Between Non-radiative Transition
Probability and Radiative Transition Probability

By using commutation formula equivalent to (8.8)

f pð Þr� rf pð Þ ¼ �i�h
@

@p
f

where f pð Þ ¼ Te ¼ p2

2m, and the operator form of electronic momentum p, the fol-
lowing relation is obtained

Ter� rTe ¼ � �h2

m
rre ð8:27Þ

In the Hamiltonian He of (8.1), except Te, the other two terms are commuted with
electronic coordinates. It is obvious from (8.27) that

He

X
i

rei �
X
i

reiHe ¼ � �h2

m

X
i

rrei ð8:28Þ

and by using (8.5) and (8.28), the following formula resulted

f
X
i

rei

�����
�����i

* +
¼ �h2

mDE eð Þ f
X
i

rrei

�����
�����i

* +
ð8:29Þ
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rre and Te are differential operators and commute with each other. On the other
hand, Vee has the following form

Vee ¼
X
e 6¼e0

V re � re0ð Þ

and commutes with
P

e rre . Therefore,
P

e rre commutes with the first two terms
in the expression of He. Similar to the introduction of (8.6), one has

f
X
i

rrei

�����
�����i

* +
¼ 1

DE eð Þ f
X
i

rreiVen

�����
�����i

* +
ð8:30Þ

The interaction potential between any electron and any lattice ion can be
expressed in the following general form

Ven ¼ f rei � Rnð Þ ð8:31Þ

The potential function in static electric model is the well-known Coulomb potential.
By (8.31)

rreiVen ¼ �rRnVen

Therefore, according to (8.6) in the form of lattice coordinate system and (8.30), we
have

f
X
i

rrei

�����
�����i

* +
¼ � f

X
n

rRn

�����
�����i

* +
ð8:32Þ

By using (8.29) and (8.32), it can be shown that

fh j
X
n

rRn ij i ¼ �mDE eð Þ
�h2

fh j
X
i

rei ij i ¼ �mDE eð Þ
�h2e

fh j
X
i

mei ij i ð8:33Þ

where mei = erei is the dipole moment of electron i. The above formula can be
written as

fh j
X
i

rRn ij i ¼ �mDE eð Þ
�h2e

Mfi ð8:34Þ
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In the zero-order approximation it is assumed that the matrix element Mfi is
independent of lattice coordinates. By (8.14) and (8.34), we obtain

Lkfi ¼ �
X
n

mDE

�h2e
CnkMfi ð8:35Þ

Equation (8.35) shows that Lkfi is a linear combination of the dipole matrix element
Mfi, therefore the relation between the non-radiative transition probability and the
electric-dipole transition probability, which is proportional to the square of the Mfi,
can be clearly obtained from (8.20) and (8.35). The ratio between these two tran-
sition probabilities will be given in the following.
By means of (8.35), the pre-exponential factor in (8.20) can be related to radiative
transition probability Wr [5]

W 0 	 40
c3

M1DE
Wr ð8:36Þ

where M1 is the mass of ligand ions of the rare earth ion. This relationship is
sometimes called parallelism between the non-radiative and radiative transition
probabilities.

As early as the beginning of the 1980s, Ray and Chowdhury [17] had actually
discussed this parallelism in a special problem of non-radiative transition excited by
the ligands. They mentioned about one interesting situation that the rare earth ions
are sited in the positions with central symmetry. In this situation the electric-dipole
transition is forbidden and the above parallelism undoubtedly requires that the
probability of non-radiative transition is also very small, thus ensuring that the
related electronic states have a very long fluorescence lifetime. The energy transfer
efficiency between Ho3+ ions and that between Ho3+ and Yb3+ or Sm3+ ions sited at
central symmetry positions is as high as 99%. This is an indirect evidence of this
parallelism. If the non-radiative transition probability is still high, it is impossible to
provide the long-lived intermediate states to make an energy transfer with so high
efficiency. This parallelism is also introduced in 1983 from another analysis by the
author [18].

8.5 Temperature Dependence of Non-radiative Transition
Probability in Weak Coupling Systems

8.5.1 Experimental

Many luminescent materials can only emit at lower temperature but not at higher
temperature. This is known as the thermal quenching of luminescence. The thermal
quenching can be caused by the increase of the non-radiative transition probability
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of the electron in the active ion with the increase of temperature, and also can be
caused by the increase of the electronic transition probability between the electronic
state of active ion and the charge transfer state of the ligand after the temperature
rises. Following this charge transfer, the electron will undergo a strong coupling
non-radiative transition to another electronic state of active ion. The first and the
second kinds of thermal quenching involve the temperature dependence of
non-radiative transition probability in weak coupling and strong coupling systems,
respectively. The mechanism of the first kind of thermal quenching will be
addressed.

Simply speaking, when temperature is raised, the electron–phonon interaction
becomes stronger, thus the non-radiative transition probability Wnr is higher. For a
definite luminescence system, the radiative transition probability Wr is independent
of the temperature basically, therefore the fluorescence efficiency will become
lower and even tend to zero when the temperature is raised. From the expression of
overlapping integral of phonon wave function in Chap. 6, it can be seen that for rare
earth ions, S 
 1. The overlapping integral of p − 1 accepting modes has the
following relation

G / Sp�1 1þ �nð Þp�1

p� 1ð Þ!

The square mean of the matrix element ufm @=@Qkj jui0

	 

of promoting mode

includes a factor ð1þ �nÞ, therefore the non-radiative transition probability includes
a factor ð1þ �nÞp. It can also be seen from (8.25) that the pre-exponential factor
A includes a factor of ð1þ �nÞp. Obviously, the relation of the non-radiative tran-
sition probability with the temperature can be written as

Wnr Tð Þ ¼ Wnr 0ð Þ 1þ �nð Þp ð8:37Þ

where

�n ¼ 1
exp �hxeff=kTð Þ � 1

ð8:38Þ

This relation can be explained by the example of Nd3+:YAG system. The energy
separation between 4F3/2 state and 4I15/2 state is about 5000 cm−1 and this crystal
has effective phonon energy of about 700 cm−1, so the non-radiative transition is a
7-phonon process. According to (8.37), it is easy to obtain the following results: the
non-radiative transition probability at 300 and 600 °C are three times and 11 times
of that at the room temperature, respectively. At very high temperature, the
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non-radiative transition probability is proportional to seven powers of the temper-
ature. The thermal quenching is obvious. Figure 8.3 shows this relation for a series
of different orders of multi-phonon process. The effective phonon energy hxeff is
assumed as 250 cm−1.

8.6 Non-radiative Transition in Strong Coupling Systems

Strong electron-phonon coupling means Huang–Rhys factor S > 1. The transition
metal group ions in materials belong to this case. The formulas introduced in
previous sections with the assumption of S
 1 are invalid in this situation. In order
to obtain calculation formulas of the non-radiative transition probability, one can
start with a phenomenological discussion by using configuration coordinate curve.
Because in the strong electron–phonon coupling case S > 1, the origins of the
configuration coordinates of potential curves for the excited state and that of the
ground state have a considerable shift. Consequently, the two potential curves will
have an intersect point (see Fig. 8.4). Suppose the energy difference between this
intersect point and the zero-potential point of the excited state is DEe. When
electronic energy reaches or exceeds DEe, the active ions will go from the excited
state to the ground state. This is the most important non-radiative pathway in such a
strong coupling system. The electrons populated in the excited state according to
Boltzmann distribution law and the non-radiative transition probability can be
expressed as

Wnr ¼ W0
nrexp �DEe=kBTð Þ ð8:39Þ
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The process of having this form of transition probability expression is usually
called a thermal activated process and DEe denotes the activation energy, which can
be found in the following way.
If the lowest energy point of the potential energy curve for the initial state i is at the
configuration coordinate Q = 0, assuming a single-phonon mode with phonon
frequency <x>, then the potential energy for the initial state can be written as

Ei þ 1
2

xh i2Q2 ð8:40Þ

The corresponding potential energy of the final state f is

Ef þ 1
2

xh i2ðQþDfiÞ2 ð8:41Þ

The above two energy curves intersect at the point with configuration coordinates
Q = Qc, then

Qc ¼
Eif � 1

2 xh i2D2
fi

xh i2Dfi
ð8:42Þ

Fig. 8.4 Configuration
coordinate diagram for
non-radiative transition
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Obviously, the activation energy DEe is

DEe ¼ 1
2

xh i2Q2
c ¼

Eif � 1
2 xh i2D2

fi

� �2
2 xh i2D2

fi

ð8:43Þ

According to the formula introduced in Chap. 6, in the case of single mode, we
have

S�h xh i ¼ 1
2

xh i2D2
fi

Therefore, the activation energy can be expressed as

DEe ¼
Eif � S�h xh i� �2

4S�h xh i ð8:44Þ

By the above simple discussion, the relation between the non-radiative transition
probability and the energy gap as well as the temperature can be obtained, although
it is impossible to know the detail about pre-exponential factor and in what con-
dition this expression can be used.

For a more sophisticated discussion, one should start with the general results
given in the classical paper of Huang and Rhys [1]. When the phonon number in the
initial state is non-zero, the overlap integral G consists of five terms: Gp+2, Gp+1, Gp,
Gp−1, and Gp−2. Considering non-radiative transition between large energy gap in
condition of larger Huang-Rhys factor, it can be assumed that the phonon-order in
the above five terms are the same. Therefore

Wnr ffi ��h2
X
l

Llfi
� �2

�nþ 1
2

� �
exp �S 1þ 2�nð Þ½ � 1þ �n

�n

� �p=2

Ip 2S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n �nþ 1ð Þ

ph i
ð8:45Þ

Expanding the above Bessel function, then

Wnr ¼ ��h2
X
l

Llfi
� �2

�nþ 1
2

� �
exp �S 1þ 2�nð Þ½ �

X1
k¼0

S 1þ �nð Þ½ �kþ p

k! kþ pð Þ! S�nð Þk

¼ ��h2
X
l

Llfi
� �2

�nþ 1
2

� �
exp �S 1þ 2�nð Þ½ � S 1þ �nð Þ½ �p

p!
1þ S2�n �nþ 1ð Þ

pþ 1
þ � � �

� �

ð8:46Þ

The relation of the non-radiative transition probability with the energy gap
cannot be seen from this formula. The saddle point approximation will be used to
introduce this relation in strong electron–phonon coupling situation. Generally, the
non-radiative transition probability can be expressed as
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Wnr ¼ 1
�h

Zþ1

�1
f zð Þeg zð Þdz ð8:47Þ

where

f zð Þ ¼ 1
2

X
q

Lqfi Dfq þDiq
� �þDifq cos z�hxq

� �þ icoth �hxq
�
2kBT

� �
sin z�hxq
� �� �� � !2

þ 1
2

X
q

Lqfi
� �2 �h

xq

� �
coth �hxq

�
2kBT

� �
cos z�hxq
� �þ isin z�hxq

� �� �
ð8:48Þ

and

g zð Þ ¼ �izDE�q þ
X
k

xk

2�h
D2
ifk coth �hxk=2kBTð Þ cos z�hxkð Þ � 1½ � þ isin z�hxkð Þf g

ð8:49Þ

where

DEq ¼ DE � �hxq

DEþ �hxq

�

where DE−q corresponds to the emission of a promoting phonon, while DE+q

corresponds to the absorption of a promoting phonon. The right-hand side of (8.49)
includes the factor of phonon frequency, which is obviously a large positive real
number. Therefore, the right-hand side of (8.49) can be written as a large positive
real number t multiplied by a function J(z), that is

g zð Þ ¼ tJ zð Þ

Equation (8.47) is generally an integral of complex function and can be calcu-
lated approximately by saddle point method. It can be seen from the form of the
function that (8.48) is a slowly varied function of z. By using saddle point method
introduced by Irving and Mullineux [19] and taking into account that the proba-
bility is a positive number as well as the phase factor can be assumed a value of 1,
the result of the integration is

Wnr 	 1
�h

2p
g00 z0ð Þ
� �1=2

f z0ð Þexp g z0ð Þ½ � ð8:50Þ

where z0 is the so-called saddle point, and it satisfies the condition of the first-order
derivative with respect to z to be zero
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g0 z0ð Þ ¼ 0 ð8:51Þ

The problem now is how to calculate saddle point z0 according to (8.51). By
considering the case of strong electron–phonon coupling and expanding the
cos(zhxk) and sin(zhxk) functions of (8.49) of z, the second term in the right-hand
side can be written as

S Tð Þ
X
n� 1

�1ð Þn
2nð Þ! �hxð Þ2n

D E
T
z2n þ iS

X
n� 0

�1ð Þn
2nþ 1ð Þ! �hxð Þ2nþ 1

D E
z2nþ 1 ð8:52Þ

where

S Tð Þ ¼
X
k

Difk
2 xk

2�h

� �
coth �hxk=2kB0Tð Þ ð8:53Þ
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� �
coth �hxk=2kBTð Þ

h i
�hxkð Þ2n ð8:54Þ
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¼ 1
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X
k

D2
ifk

xk

2�h

� �h i
�hxkð Þ2nþ 1 ð8:55Þ

It can be shown [9] in high temperature strong coupling approximation, the
terms with powers higher than z2 can be neglected, then the saddle point z0 cal-
culated according to (8.51) leads to the following result

z0 ¼ �i
DEq � S�h xh i� �
S Tð Þ �hxð Þ2

D E
T

Obviously, at saddle point we have

�hxð Þ2
D E

T
z20 	

DEq

�h xh i � S
� �
Scoth �h xh i

2kBT

� �h i
8<
:

9=
;

2

Therefore, when

DEq

�h xh i � S
��� ���
Scoth �h xh i

2kBT

� �
 1 ð8:56Þ

it is reasonable to neglect the terms higher than z2 in the expansion of (8.52).
Inequality (8.56) corresponds to the criterion introduced by Lin et al. [20].
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At high temperature

kBT � �hxq ð8:57Þ

therefore
coth �hxq=2kBT 	 2kT=�hxq ð8:58Þ

Substituting it into (8.48) and (8.49) to obtain f(z0) and g(z0), and expanding f(z0) as
a power series of T and keeping only linear term of T, then the results for f (z0) and
g(z0) are

f z0ð Þ 	
X
q

Lqfi
� �2
x2

q

0
B@

1
CAkBT ð8:59Þ

gðz0Þ 	 � DEq � S�h xh i� �2
4kBTS xh i ð8:60Þ

In the introduction of (8.59) and (8.60), the terms with negative and zero powers
of T are neglected, because T � 1. According to (8.50), the non-radiative transition
probability can be obtained

Wnr 	 1
�h

p kT
S�h xh i
� �1=2 X

q

Lqfi
� �2
x2

q

0
B@

1
CAexp �DEe=kBTð Þ ð8:61Þ

Transition probability can be written in this form, which means that the process is a
thermal activation process with activation energy

DEe ¼
DEq � S�h xh i� �2

4S�h xh i ð8:62Þ

Note that (8.61) has the same form as that of (8.39), while (8.62) is the same as
(8.44). It means that the non-radiative transition in strong coupling system is a
thermal activation process. However, it should be noted that the inequality (8.56)
has to be satisfied.

In multi-mode approximation, a similar formula can also be introduced. Freed
and Jortner [21] introduced a formula for the calculation of the non-radiative
transition probability; in this case

Wnr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
4S�h xh ikBT�

r X
q

Cq
ee0

�� ��xqcoth �hxq=2kBT
� �

exp �DEe=kBT
�ð Þ ð8:63Þ

8.6 Non-radiative Transition in Strong Coupling Systems 263



where Cq
ij denotes the matrix element between electronic states i and j

Cq
ij ¼ i�h ih j @

@Qq
jj i ð8:64Þ

The summation in (8.63) should be over all the promoting mode q. The relation
between effective temperature T* and the environment temperature T is

T� ¼ �h xh i
2kB

coth �h xh i=2kBTð Þ ð8:65Þ

where hxi denotes the averaged promoting mode frequency.
At very high temperature, that is, T � �hhxi=2kB

coth �hhxi=2kBTð Þ ! 2kBT=�hhxi

then

T� 	 T

Niznan et al. [22] pointed out that this kind of Gaussian function relation
between the non-radiative transition probability and the energy gap is only valid if
the following condition is satisfied.

DE=�h xh i � S

Scoth2 �h xh i=2kBTð Þ 
 1 ð8:66Þ

The meaning of high temperature and strong coupling can be seen from (8.58)
and (8.56). Equation (8.56) shows that for different magnitude of energy gap, the
requirement of strong coupling for Huang–Rhys factor is different. By the calcu-
lation of the Cr3+:Al2O3 system, this can be clearly seen. Assuming h <x> =
250 cm−1, S = 7 [23], at a temperature higher than room temperature
kT > 200 cm−1, (8.58) is roughly satisfied. For an energy gap of DE = 2500 cm−1,
the left side of (8.56) is smaller than 0.18. The criterion for strong coupling is
satisfied, but for a larger energy gap, for example DE = 5000 cm−1, the above
criterion cannot be satisfied. Therefore, for the 4T2 ! 4A2 transition in ruby, the
thermal activation relation cannot be satisfied at room temperature. Only at much
higher temperature it is valid. However, the situations for the 4T2 ! 2E and 4T2 !
2T1 transitions are different. The experimental results obtained by Misu [24] showed
the following relation at high temperature:

Wnrð4T2 !2 T1Þ ¼ 2:7� 108 � exp �DEe=kTð Þ; DEe ¼ 2200 cm�1

Wnrð4T2 !2 EÞ ¼ 4:4� 108 � exp �DEe=kTð Þ; DEe ¼ 2600 cm�1
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For the 2E ! 4A2 transition in ruby, because the potential energy curves of the
two correlated electronic levels are basically parallel, the non-radiative transition
between them cannot be described by the above strong coupling approximation.

8.7 Nonlinear Theory of Non-radiative Transition

The theory introduced previously is mainly based on the supposition that the
expansion of the electron–phonon interaction Hamiltonian in terms of the strain
keeping only the linear term is enough. This is the so-called linear theory of
non-radiative transition. Perlin and Kaminskii [4] pointed out that this linear theory
gives a too low transition probability for 3–6 multi-phonon non-radiative transition
while by the nonlinear theory they obtained the results well compared with the
experimental data. Orlovskii and Basiev et al. [25–28] applied nonlinear theory to
the non-radiative transition of many laser crystals and obtained some valuable
conclusions. Some of their conclusions on the relationship of the non-radiative
transition rate with the structure and chemical composition of the host materials will
be introduced in the following [28].

Their study shows that the non-radiative transition rate can be expressed as

WNR J ! J 0ð Þ ¼ 1
137

2Jþ 1ð Þ�1 2J 0 þ 1ð Þ�1
X

k¼2;4;5

Nk pð Þ LSJ U kð Þ�� ��D
L0S0J 0i

��� ���2
ð8:67Þ

Npc
k pð Þ ¼ gp �nk=Rk

0

� �2
2pþ 2kð Þ!= 2kþ 1ð Þ!p!½ � 2lþ 1ð Þ2 l

0
l
0

k
0

� �2 Ze2s
�m�hR2

0

ð8:68Þ

Nex
k pð Þ ¼ gp

1
137

� �
Gs Ssj j2 þGr Srj j2 þGpck Spj j2
� �

4 2lþ 1ð Þ2pUkp
l

0

l

0

k

0

� �2 Zc

�mR0ð Þ2
ð8:69Þ

g 	 �h
8pc�mMR2

0
ð8:70Þ

Equations (8.68) and (8.69) denote the contributions of the point charge Coulomb
interaction and the exchange interaction to the non-radiative transition rates,
respectively. In the above four formulas, p is the phonon number in non-radiative
transition process, R0 denotes the separation between the active ion and its nearest
neighbor anion and l = 3 for 4f electrons, �m is the effective phonon frequency in the
unit of wave number, n is the radius of rare earth ion, Z is the number of the anions

8.6 Non-radiative Transition in Strong Coupling Systems 265



nearest to the RE ion, and M is the reduced mass of the anion and cation of host
material.
The contribution of Coulomb interaction to the non-radiative transition rate is

proportional to Z, e2s , and �nk
� �2

. On the other hand, it is inversely proportional to

�mpþ 1, Mp, and R2kþ 2pþ 2
0 .

The contribution of exchange interaction is composed of the overlap effect of
4f electronic wave function with the ligand wave function, the effect of ligand
charge distribution on the Coulomb interaction, as well as the effect of charge
transfer state. The non-radiative transition rate of exchange interaction is propor-
tional to Z and the summation of the product G and S2, while inversely proportional
to R2pþ 2

0 , Mp, and �m2pþ 2. Crystal field fitting parameters G of fluoride and oxide
crystals are Gs = Gr = Gp ≅ 8–10.
Lattice dynamics parameter g is affected greatly by the mass of lattice ions, and the
orders of magnitude of g is in the range of 10−3–10−4 for fluoride and oxide crystals.
The larger the reduced mass M of the lattice ions, the lower is the non-radiative
transition rate WNR. The shorter the distance between the active ion and its nearest
neighbor anion and the larger the radius of nearest neighbor anion leads to the higher
the WNR. On the other hand, the higher the degree of electronic cloud overlapping,
that is the larger covalent bond proportion, the higher is the WNR. Furthermore, by
comparing the WNR expression given above and the expression of electric-dipole
transition probability AR obtained by the J–O theory, it can be seen that bothWNR and
AR are proportional to the square of reduced matrix element of unit operator and it
also demonstrates the parallelism between WNR and AR.
The contribution of Coulomb interaction to the non-radiative transition rate depends
largely on the radius of active ion. Some data of rare earth ions usually used in laser
crystals are listed as follows (in atomic unit).

Ion n2
	 


n4
	 


n6
	 


Pr3+ 1.09 2.82 15.7

Nd3+ 1.01 2.40 12.4

Ho3+ 0.69 1.22 4.5

Er3+ 0.67 1.13 3.98

Tm3+ 0.63 1.07 3.65

Nonlinear theory shows that the non-radiative transition rate WNR is different for
the same active ion in different crystals as well as different active ions in the same
crystal. In all the following transitions discussed, the contribution of k = 4 and k = 6
terms in (8.67) is much smaller than that of the k = 2 term becauseN4 andN6 aremuch
smaller than N2 [28], so that it is enough only to compare the values of the reduced
matrix element of U (2) for different transitions. The radius of Nd3+ ion is larger than
that of Er3+ ion. The reduced matrix element U(2) for the 4G7/2 ! 4G5/2 +

2G8/2

transition of Nd3+ ion and that for the 4F5/2! 4F7/2 transition of Er
3+ ion is nearly the
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same. In LaF3 crystal both the transitions belong to a 4-phonon process but the
non-radiative transition rateWNR of the former is about six times that of the latter. The
radius of Pr3+ ion is larger than that of Ho3+ ion. The reduced matrix element U(2) for
the 1G4! 3F4 transition of Pr

3+ ion is nearly the same as that of the 5I5! 5I6 transition
of Ho3+ ion. In YLF crystal both the transitions belong to a 5-phonon process but the
non-radiative transition rate WNR of the former is about 2.6 times of the latter. The
radius of Er3+ ion is a little larger than that of Tm3+ ion. The reducedmatrix element of
U(2) for the 3F5/2 ! 3F7/2 transition of Er3+ ion is equal to that for the 3F3 ! 3H4

transition of Tm3+ ion, but the non-radiative transition rateWNR of the former is about
1.5 times of the latter. The effect of the radius of active ion on the non-radiative
transition rate is mainly due to the fact that Coulomb and exchange interactions are
stronger for larger active ion radius. The effect of Coulomb interaction is reflected by
the average square of nk in (8.68), while the effect of exchange interaction is reflected
by the overlap parameters.

If the lattice dynamics parameter g is larger, the combined effect of g and the
radius n makes the difference of non-radiative transition rate WNR more obvious.
For the LaF3 crystal, �m = 400 cm−1, R0 = 2.5 Å, M = 2.28�10−23g while for the
YLF, �m = 560 cm−1, R0 = 2.27 Å, M = 2.60�10−23g. Calculating by (8.70), the g
value of the former is larger than the latter by a ratio of 2.1, in addition that the
radius of Nd3+ ion is larger than that of the Tm3+ ion. Therefore, for the same
4-phonon transition process, the WNR of the 4G7/2 ! 4G5/2 +

2G7/2 transition of
Nd3+:LaF3 crystal is 4.5 times that of the 3H5 ! 3F4 transition of Tm

3+:YLF crystal,
although the ratio of the square reduced matrix element U(2) for the former to that of
the latter is 6/9. The square reduced matrix element of U(2) for the 4G7/2 +

2K13/2 !
4G5/2 +

2G7/2 transition of Nd3+ ion is 0.0583 while that for the 4D3/2 ! 2P3/2
transition is 0.0118, that is, the former is 4.9 times of the latter. In Nd3+:YAG
crystal the non-radiative transition rate of the former is 5.9 times that of the latter.

The lattice dynamics parameter g is proportional to the mean square of lattice
vibration amplitude; therefore if the melting point of the crystal is lower or the
hardness of the crystal is lower, the lattice vibration amplitude will be larger at the
same temperature, then the non-radiative transition rate of active ion in this crystal
generally will be higher, when the other factors are similar.

Non-radiative transition rate decreases with the increase of the distance between
the active ion and its ligands. Following is the non-radiative transition rate WNR for
the 3P0 ! 1D2 transition of Pr3+ ion in four different crystals. Comparing the Pr3+

ion substituting for La3+ ion with that substituting for Y3+ ion, the radius of La3+

ion larger than that of the Y3+ ion results in the distance between the Pr3+ ion and its
nearest neighbor O2+ ion larger for the former than that for the latter. Therefore in
the following table, the non-radiative transition rate of the first crystal is lower than
that of the second crystal, while the third crystal is lower than that of the fourth
crystal.
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Crystal DE (cm−1) �hxmax cm�1ð Þ n WNR (s−1)

LaNbO4 3500 810 4.32 4.5�104

YNbO4 3500 830 4.16 2.2�106

Na5La(WO4)4 3740 960 3.896 6.0�104

Na5Y(WO4)4 3720 960 3.875 1.0�105

For the non-radiative transition process emitting phonon number p > 6, the
non-radiative transition rate obtained by nonlinear theory is still lower than the
experimental result; moreover, the deviation between the calculated values and the
experimental data will increase with p.

8.8 Stimulated Non-radiative Transition

According to the aforementioned theory of non-radiative transition, by a simple
calculation, it can be seen that in the four-level high power continuous laser, the
stimulated radiative transition (SRT) probability between upper and lower laser
levels is much higher than the decay rate from the lower laser level to the ground
state. The continuous Nd3+:YAG laser can be used as an example to illustrate this
problem.

It is well known that the photon number in the laser cavity can be calculated by
the following expression

nk ¼ 2LcPout

ccouthmk
ð8:71Þ

where Pout is laser output power, Lc is the length of laser cavity, and cout is loss per
pass due to the mirror transmission. The laser wavelength of Nd3+:YAG crystal is
kk =1.064 lm (emission generated by the transition of R2 ! Y3, that is, from
energy level R2 of multiplet 4F3/2 to energy level Y3 of multiplet 4I11/2) and the
frequency of laser is mk 	 2.8�1014 s−1. Its multi-mode oscillation linewidth is in
the range of 15–30 K GHz [29]. Suppose it is 20 K GHz, then Dmk 	 2�1010 s−1.
When laser output power reaches 10 W 	 5�1023 cm−1s−1 (energy in the unit of
wave number), and suppose the length of cavity is Lc = 20 cm, the loss per pass cout
= 0.2 and that the photon number is nk 	 3.6�1011. Suppose the shape of laser
spectral line is Lorenz type, then the relation of the spontaneous transition proba-
bility AR2Y3 with the stimulated emission cross-section rem is [30]

AR2Y3 ¼ 4p2n2Dmrem
k2

ð8:72Þ

Using the data of stimulated emission cross-section rem = 6.5 � 10−19 cm2 for
laser transition R2 ! Y3 [30], AR2Y3 	 1.5�102 s−1 can be obtained. The SRT
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probability of R2 ! Y3 transition will be nkAR2Y3, and it reaches 5.4 � 1013 s−1.
However, according to the experimental result [16], the non-radiative transition
probability of 4I11/2 ! 4I9/2 at room temperature is 1010 s−1 orders of magnitude at
most (taking account of the nonlinear mechanism, the theoretical calculation value
can only reach 1.6 � 1010 s−1 [16]). It means that when the output power of Nd3+:
YAG laser reaches P = 10 W, the SRT probability of 4F3/2 ! 4I11/2 transition is far
outweighing the non-radiative transition probability of 4I11/2 ! 4I9/2. In this case,
the particles in the low laser level cannot be removed in time, so that the population
inversion of the upper and the lower laser levels cannot be maintained and the
bottleneck effect is inevitable. However, as it is well known, the output power of
continuous Nd3+:YAG laser has reached the scale of kilowatt nowadays, but no
bottleneck effect appeared. Obviously, the experimental fact can only be explained
by a new non-radiative transition mechanism excited by the laser itself. In the
following it will be demonstrated that the mechanism proposed by the author [31,
34] referred to as stimulated non-radiative transition (SNT), can well explain the
related phenomenon.

The starting point to solve this problem is to deal with the photon–electron–
phonon system as a whole and write the Hamiltonian of the system as

H ¼ He þHr þHl þHer þHel ð8:73Þ

where He, Hr, and Hl express the Hamiltonians of electron, photon, and phonon,
respectively, Her is the Hamiltonian of photon–electron interaction, and Hel is the
Hamiltonian of electron–phonon interaction. As being shown in Chap. 4, in dipole
approximation, Her can be written as

Her ¼ e
mc

p � A ¼ e
m

X
ka

2p�h
Vxke

� �1=2

ea kð Þ � p a�ka tð Þeik�r þ aþ
ka tð Þe�ik�r� � ð8:74Þ

Suppose there are N phonon modes Qi, so that Hel is

Hel ¼ 1ffiffiffiffi
N

p
X
i

@V
@Qi

Qi ð8:75Þ

The transition between electronic energy levels corresponds to the absorption or
emission in the wavelength range of ultraviolet–visible–near infrared. Suppose the
photon and the phonon has no direct interaction, so that the term to describe its
interaction is not included in (8.73).
If there are nk photons in the electromagnetic field, the wave function of electron–
photon system can be written as

/ikj i ¼ wij i nkj i ð8:76Þ

where |w > is electronic wave function and |nk > is photon wave function. Phonon
system can be regarded as slow system compared with photon-electron system.
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Similar to the adiabatic approximation in lattice relaxation theory, the initial state
wave function of photon-electron-phonon system can be expressed as

Uikkj i ¼ wij i nkj i uikj i ð8:77Þ

By the single-mode approximation of the radiation field and phonon field, the
zero-order eigenvalue of initial photon–electron–phonon system is expressed as

Eikk ¼ Ei þ nk þ 1
2

� �
�hxk þ nk þ 1

2

� �
�hxk ð8:78Þ

The perturbation of non-diagonal matrix elements of interaction Hamiltonian Her

and Hel induce the radiative transition, non-radiative transition, and light scattering
processes. SNT is a process induced by the following second-order perturbation
matrix element of Her

Mð2Þ
if ¼

X
vk1k

Uikk Herj jUvk1kh i Uvk1k Herj jUfk1k1

	 

Eikk � Evk1k þ id

ð8:79Þ

In this process, the electron excited by the photon transits from the most probable
phonon state k of the initial electronic state i to the same phonon state k of the
intermediate electronic state m and stimulated by the photon transiting simultane-
ously to the final phonon excited state k1 of final electronic state f. In this process,
the electronic system undergoes a non-radiative transition of i ! f, the phonon
system absorbs the energy emitted by the electron, while the photon system
completed a virtual process without energy variation. The initial electronic state i,
the intermediate electronic state m, and final the electronic state f discussed here are
the crystal field energy levels 4I11/2,

4F3/2, and 4I9/2 multiplets of Nd3+ ion,
respectively. The energy of electron and phonon satisfies the following relations

DEif ¼ Ei � Ef [ 0; nk1 [ nk; Ei � Ef ¼ nk1 � nkð Þ�hxk � p�hxk

In (8.79) d is the linewidth of laser beam in the unit of energy. When the photon
energy �hxk satisfies the resonance condition Eikk � Emk1k ¼ Ei þ �hxk � Em ¼ 0, this
process has practical physical meaning.

In order to introduce expression of the transition probability, suppose the
N phonon modes which interacted with electronic system have the same frequency
xk and the radiation field also has one mode xk, the initial photon wave function
can be written as

nij i ¼ n1; n2; . . .; nk; . . .j i ð8:80Þ

On the other hand, the photon wave functions of the intermediate and the final states
are
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nmj i ¼ n1; n2; . . .; nk � 1; . . .j i; nf
�� 
 ¼ n1; n2; . . .; nk; . . .j i ð8:81Þ

According to the golden rule of quantum mechanics, similar to the deducing
method of Heitler [32], the transition probability of this process can be expressed as

WSNT ¼ 2p
�h

Z
M 2ð Þ

if

��� ���2q Ef
� �

dEf ð8:82Þ

Considering that the final state is an electronic discrete stationary state but a pho-
ton–phonon composed continuum, the product of final state density q(Ef)dEf can be
expressed as

q Ef
� �

dEf ¼ q Ekð Þq Ek0ð Þd Eif � p�hxk0
� �

dEkdEk0

¼ 1
�h
q xkð Þq xk0ð Þd xk0 � xk=pð Þdxkdxk0

In the above deduction, the following relations are used

xk ¼ Eif =�h; xk ¼ xk=p d Eif � p�hxk0
� � ¼ 1

�h
d xk0 � xk=pð Þ

Substituting these expressions to (8.82) and integrating over xk′, the probability
of SNT can be expressed as follows

WSNT ¼ 2p

�h2
q xkð Þ

Z
M 2ð Þ

if

��� ���2q xkð Þdxk ð8:83Þ

In virtue of linewidth Dxk of the laser beam is very narrow, the above expression is
approximately equal to

WSNT 	 2p

�h2
M 2ð Þ

if

��� ���2q xkð ÞDxkq xkð Þ ð8:84Þ

The state density q(xk) of final photon state can be calculated by (4.15) of Chap. 4,
which is rewritten in the following

q xkð Þ ¼ Vx2
k

8p3c3
dXk ð8:85Þ

The accepting mode of the non-radiative transition is optical mode, q(xk) is the
state density of optical phonon mode, which is a quantity related to the crystal
structure and the magnitude of wave vector k and has not a simple analytic
expression. The matrix element of (8.79) can be expressed as
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Uikkh jHer Umk1kj i ¼ wih j nkh jHer nk � 1j i wmj i uikh jumki ð8:86aÞ

Umk1kh jHer Ufkk1

�� 
 ¼ wmh j nk � 1h jHer nkj i wf

�� 

umkh juf k1


 ð8:86bÞ

Integrating the above transition matrix elements over the photon wave function
at first and then referring to the (4.16) and (4.17) and the Poisson equation of
quantum mechanics used in the derivation of (4.19) and (4.20), the transition matrix
element for the photon-stimulated absorption process in electric dipole approxi-
mation can be obtained as

wih jHer wmj i uikh jumk1


 ¼ 2p�hxknk
Ve

� �1=2
wi e

X
j

rj

�����
�����wm

* +
uikh jumki ð8:87aÞ

For photon-stimulated emission the transition matrix element is

wmh jHer wf

�� 

umkh juf k1


 ¼ 2p�hxknk
Ve

� �1=2
wm e

X
j

rj

�����
�����wf

* +
umkh juf k1


 ð8:87bÞ

For the special process considered here, only one intermediate state satisfy the
condition of Eikk � Emk1k ¼ 0 and remember that the initial phonon state is the same
as the phonon state of the intermediate electronic state, uikj i ¼ umkj i, uikh jumki ¼ 1
and so the square of matrix element in (8.79) can be expressed as

M 2ð Þ
if

� �2
	 M2

imM
2
mf uikh juf k1


�� ��2=d2
Because

uk ¼
Y
s

uks

uikh juf k1


�� ��2 can be referred to as lattice relaxation factor flr having an expression
the same as (6.47) of Chap. 6.

flr ¼ uikh juf k1


�� ��2¼ e�S S
�p

p!

where S is Huang–Rhys factor of the crystal, so that the probability of SNT is
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WSNT 	 2p

�h2
M2

imM
2
mfq xkð Þq xkð ÞDxkflr=d

2

M2
im ¼

2p�hxknk
Ve

� �
wi e

X
j

rj

�����
�����wm

* +�����
�����
2

M2
mf ¼

2p�hxknk
Ve

� �
wm e

X
j

rj

�����
�����wf

* +�����
�����
2

By using the stimulated absorption transition probability from initial state to
intermediate state

WSRT
im ¼ 2p

�h2
Mimj j2q xkð Þ

and the spontaneous emission transition probability from intermediate state to final
state is

Amf ¼ 2p

�h2
Mmf

�� ��2q xkð Þ=nk

Therefore, the SNT probability is expressed as

WSNT 	 nkAmf W
SRT
im

�h2Dxkq xkð Þ
2pd2q xkð Þ

� �
flr � rnkAmf W

srt
im

r ¼ �h2Dxkq xkð Þ
2pd2q xkð Þ

� �
flr ¼ �h

2pd

� �
q xkð Þ
q xkð Þ
� �

flr

ð8:88Þ

In the above expression d ¼ �hDxk has been used. The Huang–Rhys factor S is
generally in the order of magnitude 10−2–10−1 for rare earth ions in crystals, and in
YAG crystal, it can supposed to be 0.05. At room temperature, the minimum energy
separation between the crystal energy level Y3 of

4I11/2 and the crystal energy level
X3 of

4I9/2 is about 2000 cm−1 [16] and the effective phonon energy of YAG crystal
is about 700 cm−1. The phonon number in (8.80) can be taken as p = 3, therefore,
flr = 2 � 10−5. On the other hand, by using Dmk 	 2�1010 s−1, d 	 0.7 cm−1 and
�h=2pd ¼ 1:2� 10�12 s, it can be obtained that r = 2.6�10−17�(q(xk)/q(xk)) s.
According to the ratio of fluorescence branch ratios of R2 ! Y3 transition to R2 !
X3 (Z3) transition being 0.125/0.054 and A(R2 ! Y3) 	 1.5�102 s−1, it can be
estimated that A(R2 ! X3) 	 65 s−1. Substituting it into (8.88), the following
expression resulted
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WSNT 4I11=2 ! 4I9=2
� � 	 6� 10�5 q xkð Þ=q xkð Þð ÞWSRT R2 ! Yð Þ ð8:89Þ

The calculation of the density q(xk) of optical phonon mode for YAG crystal is
a problem to be studied, however, owing to the fact that the phonon velocity is
much less than that of the photon, without doubt the density q(xk) of optical
phonon mode has more than 5 orders of magnitude higher than that of the photon
mode density q(xk). Therefore, when laser power reaches 10 W, it can be seen that

WSNT 4I11=2 ! 4I9=2
� �� WSRT R2 ! Y3ð Þ

That is, the probability of SNT from the lower laser level to the ground state is
much higher than that of SRT from upper laser level to lower laser level. For lasers
with higher output power, the multiple of the SNT probability higher than that of
the SRT will be increased, and the bottleneck effect will never happen.
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Chapter 9
Energy Transfer and Migration Between
Ions

In the previous discussion on the absorption and emission of light, all processes
take place in a single active center. In fact, other centers in the medium contribution
to the absorption and emission of a single active center. It involves the physical
processes of energy transfer and migration, which are very important in the study of
laser materials. After absorbing excitation energy, the electrons in luminescent
center transit to excited states, then the excitation energy can be consumed usually
by light emission or transferred to thermal energy of lattice vibration. However, part
of the excitation energy can be transferred from one center to other centers.
Basically, there are three kinds of centers in laser materials, that is, active center
(activator), sensitized center (sensitizer), and quenching center. The activator is
luminescent center in the materials. The sensitizer is defined as the center used to
absorb excitation energy then transfer it to the activator, whereas the quenching
center only consumes the excitation energy being transferred to it. Certainly, ion,
group, or molecule of host material can also act as a sensitizer to transfer absorbed
excitation energy to activator. This is called as host sensitization. Usually, the
energy exchange between sensitizers or activators is defined as energy migration,
while the energy exchange between sensitizer and activator is defined as energy
transfer. We will discuss these two processes but does not involve electric charge
migration.

The energy transfer and migration discussed are the results of electric multi-pole,
magnetic dipole, or exchange interactions. As early as 1940s, Forster [1, 2] devel-
oped the theory of dipole-electric interaction and Dexter [3] further generalized it to
include high-order multi-pole and exchange interactions in 1950s. Orbach [4],
Miyakawa and Dexter [5] extended the theory to include phonon-assisted transfer.
With the rapid development in the field of laser and fluorescent materials, especially
the development of powerful laser spectroscopy (time-resolved spectroscopy,
selection excitation spectroscopy, fluorescence narrowing spectroscopy, and so on.),
many micro processes including many ultrafast processes in the material can be
observed in depth and concretely. All of these stimulate the research interest in the
area of energy transfer and make it has a great progress. In this chapter, some basic
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theoretical knowledge of this field closely related to the spectroscopic properties of
solid-state laser material will be introduced. There is a very extensive volume of
literature published, which the reader can directly refer to. Among these, the review
articles written by Auzel [6–8], Blasse [9, 10], Yen [11], and Holstein [12] are
worthy to be read to obtain a general idea about the development in this field.

9.1 Theory of Resonant Energy Transfer

There are several types of energy transfer between active ions: Radiation reab-
sorption (the radiation trapping effect mentioned earlier), photoconductivity, exci-
ton migration, and non-radiative resonance energy transfer. The following
discussion is about non-radiative resonance energy transfer, in which the light
transition is a virtual process. Only two-body interaction is to be dealt with,
although there are three-body and even many-body interactions in fact.
Phonon-assisted energy transfer and energy migration will be introduced later.

Assume that in the initial state i, there is a sensitizer (S) in excited state while a
nearby activator (A) is in ground state. In the final state f, S goes down to ground
state, while A goes up to excited state (as shown in Fig. 9.1). This process is
introduced by a series of interactions between ions. One should first examine their
interaction Hamiltonian.

Hamiltonian H of the system can be divided into two parts, H0 of the single ion
and Hsa of the interaction between two ions, expressed as

H ¼ H0 þHsa ð9:1Þ

Hsa (excluding exchange interaction temporarily) is

Hsa ¼ e2

e Rsa � rs þ raj j ð9:2Þ

where Rsa is the distance vector between two nuclei, rs and ra are the electronic
coordinates of S and A, respectively. e is the dielectric constant of the material.
Expanding (9.2) in terms of Rsa, then

S A

Fig. 9.1 Schematic diagram
for resonant energy transfer
between ions
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Hsa ¼ Hedd
sa þHedq

sa þHeqd
sa þHeqq

sa þHmdd
sa þ � � � ð9:3Þ

where the first term is the electric dipole–dipole interaction expressed as

Hedd
sa ¼ 1

eR3
sa

ms
ed �ma

ed �
3
R2
sa

ms
ed � Rsa

� �
ma

ed � Rsa
� �� �

ð9:4Þ

ms
ed and ma

ed denote the electric dipole of S and A, respectively. The other terms in
(9.3) are the Hamiltonians of electric dipole–quadrupole, electric quadrupole–
quadrupole, and magnetic dipole–dipole interactions. Hsa usually can be expanded
as

Hsa ¼
X

k1k2q1q2

e2

eRk1 þ k2 þ 1

� �
C k1k2ð Þ
q1q2 D k1ð Þ

q1 rsð ÞD k2ð Þ
q2 rað Þ ð9:5Þ

Multi-pole moment in the above expression is

DðkÞ
q ðrÞ ¼

X
i

4p
2kþ 1

� �1=2

rðkÞm Ykq hi;uið Þ ð9:6Þ

It is summed over all the electrons in S or A and

C k1k2ð Þ
q1q2 ¼ ð�1Þk1 4p 2k1 þ 2k2ð Þ!

2k1ð Þ! 2k2ð Þ!
� �1=2

k1
q1

k2
q2

k1 þ k2
�q1 � q2

� �
Yk1 þ k2q1 þ q2ðh;uÞ
� 	�

ð9:7Þ

The first term in (9.3), that is, the (9.4), corresponds to the case k1 = k2 = 1. The
second term corresponds to k1 = 1, k2 = 2, the third term corresponds to k1 = 2,
k2 = 1, the fourth term corresponds to k1 = 2, k2 = 2, and so on. The wave function
of the initial state is |W(rs, ae; ra, ag)〉 and that for the final state is |W(rs, ag; ra, ae)〉.
a refers to the electronic states. Consequently, the probability of energy transfer
becomes

W ¼ 2p
�h

W rs; ae; ra; ag
� �

Hsaj jW rs; ag; ra; ae
� �
 ��� ��2q Ef

� �
d Ef � Ei
� � ð9:8Þ

A detail expression for the energy transfer probability of electric dipole–dipole
interaction can be introduced as follows. Let’s focus on the energy transfer between
one S and one A. By excluding the exchange interaction between these two ions,
the zero-order wave function can be expressed as a product of the wave functions of
these two ions, that is
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W rs; ai; ra; aj
� � ¼ W rs; aið ÞW ra; aj

� � ð9:9Þ

Owing to the fact that the direction of electric dipole is arbitrary in the space,
substituting (9.4) into (9.8), the following scalar products should be averaged over
c, c1, and c2, that is, the angles between ra and rs, rs and Rsa, and ra and Rsa,
respectively

ms
ed �ma

ed ¼ ms
edm

a
ed cosc;m

s
ed � Rsa ¼ ms

edRsa cosc1;m
a
ed � Rsa ¼ ma

edRsa cos c2

It is easy to obtain

1
4p

Z
cos2cdX ¼ 1

3
;
1
4p

Z
coscdX ¼ 0;

1
4p

Z
sincdX ¼ 0 ð9:10Þ

The results for the average over c1 and c2 are the same. The average square of (9.4)
consists of three terms and by using (9.10) it can be shown that the sum of the first
and the third term is equal to (4e4/3)|〈rs〉|2|〈ra〉|2. The calculation of the second term
involves the relationship between three vectors and the angles c1, c2, and c. The
scalar products of ra with rs, rs with Rsa and ra with Rsa can be calculated by using a
spherical coordinate system with Rsa acting as a polar axis. In this way one has
c = c1 − c2. The calculation result of this second term is −(2e4/3)|〈rs〉|2|〈ra〉|2.
Therefore

ms
ed �ma

ed �
3
R2
sa

ms
ed � Rsa

� �
ma

ed � Rsa
� �����

����
2

* +
av

¼ 2e4

3

� �
rsh ij j2 rah ij j2 ð9:11Þ

where |〈rs〉|2 denotes the matrix element |〈W(rs, ae)|rs|W(rs, ae)〉|2, and similar for
|〈ra〉|2. The transition matrix element multiplied by state density q(Ef) in (9.8) can
be written as the transition matrix element multiplied by the product of line shape
factor gs(E)Ga(E) and then integrate over the energy E, whereZ

gsðEÞdE ¼
Z

GaðEÞdE ¼ 1

For the sake of simplicity, the degeneracy of the energy levels has not been taken
into account and by using (9.4) and (9.11), we obtained

Wdd ¼ 4p
3�he2

1
R6
sa

Z
e rsh ij j2 e rah ij j2gsðEÞGaðEÞdE ð9:12Þ

If the probability As of S adopts the expression of (5.2a) and denote the factor

3n= n2 þ 2ð Þ½ �2 as b, then e rsh ij j2¼ 3�hc3bAs=4x3n3. On the other hand, the square
of dipole matrix element can be expressed by oscillator strength of (5.18a) as
|e〈ra〉|2 = 3he2bfa/2mnxs. Transform the variable x to wave number �m by using
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gðEÞ ¼ ngð�mÞ=hc and xn ¼ 2pc�m; substitute As ¼ gs=ssf . The energy transfer
probability of the electric dipole–dipole interaction finally takes the form

Wdd ¼ 1
R6
sa

3fags
64p4n3ssf

e2

mc2
b2
Z

gað�mÞGsð�mÞ
�m4

d�m ð9:13Þ

where e = n2 has been used. The factor b approximately equals to 1 and so will be
omitted in the following formulas. Using �mav to represent the average wave number
in the overlap region of emission spectrum of S and absorption spectrum of A, then
the transfer probability can be expressed approximately as

Wdd � 1:36� 10�16cm
R6
sa

fags
n3ssf

Oin

�m4av
ð9:14Þ

where the diameter of the electron e2/mc2 = 2.82 � 10−13 cm has been substituted
and Oin ¼

R
gað�mÞGsð�mÞd�m is the overlap integral between emission spectrum of S

and absorption spectrum of A. If one uses both the oscillator strengths of S and A,
then (9.12) takes the form

Wdd ¼ 1
R6
sa

3p�he4fafs
n6m2x2

Z
gsðEÞGaðEÞdE ð9:15Þ

Considering the difference of one factor (1/4pe0)
2 in different unit system, the

difference in the definition of oscillator strength used and the approximation of
3n/(n2 + 2) � 1 adopted here, it can be seen that formula (9.15) is consistent with
the formula (10.12) in the book of Henderson and Imbusch [13].

The conceptions of critical interaction distance and critical concentration have
been used in the literature to deal with energy transfer between ions. When the
separation between S and A equals to the critical distance, the energy transfer
probability will be equal to the fluorescence decay rate 1/ssf of S. By (9.14), it is
obvious that the critical interaction distance takes the following form

Rc ¼ 2:27� 10�3 fagsOin

n3�m4

� �1=6

cm ð9:16Þ

The critical concentration Cc is defined as a concentration in which there is an
interaction ion in the sphere with the radius of critical interaction distance;
obviously

Cc ¼ 4p
3
R3
c

� ��1

ð9:17Þ

By means of critical interaction distance, the energy transfer probability of dipole–
dipole resonance can be written as
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Wdd ¼ R6
C

R6
sassf

ð9:18Þ

The critical interaction distance and critical concentration can be roughly estimated
for the energy transfer of rare earth ions. A typical value of 10−6 for the oscillator
strength of rare earth ions can be assumed, and the wave number of the radiation is
supposed to be 2 � 104 cm−1 and gs � 1, n = 1.7. The overlap integral Oin is
estimated to be 5 � 10−3 cm. Substituting all these data into (9.16) results in Rc �
4.2 � 10−8 cm. By (9.17) one can obtain Cc = 3.2 � 1021 cm−3. It indicates that the
energy is easy to be transferred by the interaction of ions.

The expressions of energy transfer probability by high-order multi-pole inter-
action will not be introduced in detail here. The relations between them can be
written as

Wdq ¼ k=Rsað Þ2 fQ=fDð ÞWdd ð9:19Þ

Wqq ¼ k=Rsað Þ4 fQ=fDð Þ2Wdd ð9:20Þ

where k is the wavelength of the transition and fD and fQ are the oscillator strengths
of electric-dipole and electric-quadrupole transitions, respectively. From (9.5), the
energy transfer probability by multi-pole interactions is closely related to the dis-
tance between two kinds of ions:

Dipole-Dipole 1=Rsað Þ6
Dipole-Quadrupole 1=Rsað Þ8
Quadrupole-Quadrupole 1=Rsað Þ10

Besides, energy transfer induced by the magnetic dipole–dipole interaction has
similar distance dependence as that induced by the electric dipole–dipole interac-
tion. For 3d electrons, the additional exchange interaction among them has to be
taken into account. The energy transfer probability depends on both coordination
number Z and wave function overlap integral S

WEX/exp½�2ZlnS� ð9:21Þ

9.2 Phonon-Assisted Energy Transfer Between Ions

The energy transfer related energy level separation between S and A in the material
is not well matched in many cases. Therefore, there is an energy mismatch between
the photon energy emitted by S and that absorbed by A. Thus, the overlap integral
Oin in (9.14) is equal to zero generally. The energy transfer in this situation makes
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using phonon as an intermediate. This process is called phonon-assisted energy
transfer, and it is shown schematically in Fig. 9.2.

In this kind of energy transfer process, the energy mismatch can be compensated
by absorbing or emission one or two phonons, so as to maintain the energy con-
servation of the whole process. However, the multi-phonon-assisted energy transfer
has a very low probability. As will be discussed later, there is also an exponential
energy gap law here.

Let’s first introduce the expression of transfer probability for
single-phonon-assisted energy transfer. It can also be calculated by the golden rule
in quantum mechanics, that is

W1�p ¼ 2p
�h

Mifj j2d �hxk � DEsað Þ ð9:22Þ

where the matrix element Mif is a second-order matrix element because it involves
multi-pole interaction between ions as well as electron–phonon interaction, and can
be expressed as the product of the matrix elements of ion–ion interaction and that of
electron–phonon interaction

Mif ¼
X
m¼s;a

a�; s; nk � 1 Hsaj ja; s�; nk � 1h i a; s�; nk � 1 HepðmÞ
�� ��a; s�; nk
 �

Es � Es � �hxkð Þ

þ
X
m¼s;a

a�; s; nk � 1 HepðmÞ
�� ��a�; s; nk
 �

a�; s; nk Hsaj ja; s�; nkh i
Es � Ea

ð9:23Þ

where a and s denote the ground states (a* and s* denote excited states) of activator
(A) and sensitizer (S), respectively. As introduced previously, the first-order elec-
tron–phonon interaction can be expressed in terms of the strain e as

S A  S A

phonon

phonon

(a) (b)

Fig. 9.2 Schematic diagram of phonon-assisted energy transfer, S: sensitizer, A: activator.
a Energy mismatch DEsa compensated by phonon emission; b energy mismatch DEsa compensated
by phonon absorption
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Hep ¼ V1e

In the above expression, strain tensor e has been averaged over the solid angle in the
space. By using formula in Chap. 6, e can be expressed as linear combination of
phonon creation and phonon annihilation operators and an angle averaged factor a
is introduced, which has the order of magnitude 1.

e ¼ i
X
k

�hxka
2Mv2

� �1=2

bk � bþ
k

� � ð9:24Þ

This expression has the similar form as that introduced in Sect. 6.5; the difference is
that an angle factor a with order of magnitude 1 is introduced here.

On the other hand, if we use the notations u V1j juh i ¼ f and u� V1j ju�h i ¼ g to
denote the matrix elements of V1 in low energy state u and high energy state u*,
respectively, where u = a or s, then

a; s�; nk � 1 Hep sð Þ�� ��a; s�; nk
 � ¼ gðsÞ nk � 1 eðsÞj jnkh i
¼ gðsÞ nk � 1 ej jnkh i exp 	ik � rsð Þ

a; s�; njk � 1 Hep að Þ�� ��a; s�; njk
 � ¼ f ðaÞ nk � 1 eðaÞj jnkh i
¼ f ðaÞ nk � 1 ej jnkh i exp 	ik � rað Þ

a�; s; nk � 1 Hep sð Þ�� ��a�; s; nk
 � ¼ f ðsÞ nk � 1 eðsÞj jnkh i
¼ f ðsÞ nk � 1 ej jnkh i exp 	ik � rsð Þ

a�; s; nk � 1 Hep að Þ�� ��a�; s; nk
 � ¼ gðaÞ nk � 1 eðaÞj jnkh i
¼ gðaÞ nk � 1 ej jnkh i exp 	ik � rað Þ

ð9:25Þ

The relation of strain e with wave vector k and position vector r can be referred to
Chap. 6. Owing to the fact that the ion–ion multi-pole interaction does not involve
phonon coordinates and the phonon wave functions are normalized, we have

a�; s; nk � 1 Hsaj ja; s�; nk � 1h i ¼ a�; s; nkh jHsa a; s
�; nkj i ¼ a�; sh jHsa a; s

�j i

If Jsa is used to represent the above matrix element, then it is easy to obtain

Mif ¼ 	Jsa
nk � 1h je nkj i

DEsa
exp 	ik � rað Þ f sð Þ � g sð Þð Þexp 	ik � rsað Þ � f að Þ � g að Þð Þ½ �

ð9:26Þ

where rsa = rs − ra and DEsa is absolute value of energy difference between
the electronic excited state of S and A. For the single-phonon process, we have
DEsa = |Es − Ea| =�hxk. In the introduction of formula (9.26), it should be noted that
when Es > Ea, the electronic system will emit one phonon in the energy transfer
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process, thus the phonon state becomes nk+ 1, and the energy difference in the
denominator of the first term of (9.23) is ��hxk ¼ �DEsa; when Es < Ea, the
electronic system will absorb one phonon in the energy transfer process, thus the
phonon state become nk − 1, and the energy difference in the denominator of the
first term of (9.23) is �hxk ¼ DEsa. In the case of S and A are the same or similar
kind of ion, f(a) − g(a) � f(s) − g(s). By using (9.22), the single-phonon-assisted
energy transfer probability takes the form

W1�p ¼ 2p
�h
J2saðf � gÞ2

DE2
sa

X
k

nk � 1h je nkj ij j2h k; rsað Þd �hxk � DEsað Þ ð9:27Þ

h k; rsað Þ ¼ exp �ik � rsað Þ � 1j j2

On the other hand, by using (9.24), for a particular phonon mode one has

nk � 1h je nkj ij j2¼ �hxka
2Mv2

� �
nk þ 1
nk

 �
ð9:28Þ

The summation over k in (9.27) can be changed to integral according to the fol-
lowing way

X
k

hnk � 1je nkj ij j2 ¼ V
8p3

Z
hnk � 1je nkj ij j24pk2dk ð9:29Þ

where V
8p3 is the state density in k space, and it can be changed to an integral over xk

by xk= km

V
2p2v3

Z
nk � 1h je nkj ij j2x2

kdxk ð9:30Þ

The factor h(k, rsa) has different values in two different cases. When energy mis-
match DEsa is large, k�rsa > 1. The wavelength of the phonon is in the same order of
magnitude as the distance between S and A. In this case the space average of
h(k, rsa) is about 2. By using the following relation

d �hxk � DEsað Þ ¼ dxk

dE
d xk � DEsa=�hð Þ ¼ 1

�h
d xk � DEsa=�hð Þ

the single-phonon-assisted energy transfer probability can be calculated according
to (9.27) to obtain the result as follows
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W1�p ¼ J2saðf � gÞ2DEsa

6p�h4q

a
v5

nk þ 1
nk

 �
ð9:31Þ

where q denotes the density of the material. When energy mismatch DEsa is small,
k�rsa 
 1, and the space average of h(k, rsa) is approximately (krsa)

2/3. After the
similar calculation, the following expression for single-phonon-assisted energy
transfer probability can be obtained

W1�p ¼ J2saðf � gÞ2DE3
sar

2
sa

6p�h6q

a
v7

nk þ 1
nk

 �
ð9:32Þ

In thermal equilibrium, nk in (9.31) and (9.32) should be replaced by the following
average value

�n ¼ 1
exp DEsa=kBTð Þ � 1

ð9:33Þ

Two-phonon-assisted energy transfer probability can be introduced by
third-order perturbation method in the similar way. For the case of small energy
mismatch, two-phonon inelastic scattering may result in an efficient energy transfer,
and in this case DEsa ¼ �hxk0 � �hxk. If energy mismatch is larger than the energy of
one phonon, in the third-order perturbation, the absorption and emission of two
phonons satisfy DEsa ¼ �hxk0 þ �hxk:

The energy gap law of phonon-assisted energy transfer should be simply men-
tioned. It involves a system with strong electron phonon coupling. Although there is
a certain amount of mismatch between the related energy gaps of S and A, but the
overlapping integral of the phonon sideband of the emission spectrum for S and that
of the absorption spectrum for A is not equal to zero. Miyakawa and Dexter [5]
demonstrated by using generating function method that the relation of energy
transfer probability for p-phonon-assisted process with that for the zero-phonon
energy transfer process can be expressed as

WðpÞ ¼ Wsað0Þ exp ð�bDEÞ ð9:34aÞ

Wsa(0) and b is expressed as

Wsað0Þ ¼ 2pJ2sa
R
gaðEÞGsðEÞdE

�h
e� �gs þ �gað Þ ð9:34bÞ

b ¼ �hxkð Þ�1 ln
p

�gs þ �gað Þð�nþ 1Þ
� �

� 1
 �

ð9:34cÞ

In the above expression, �gs and �ga are the coupling coefficients of electron–phonon
coupling (written as ga and gb in [5]). By using these expressions, the
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temperature-dependent relation can be deduced. Substituting p = DEsa/hxk and
(9.34c) into (9.34a), it can be seen that the p-phonon energy transfer probability is
proportional to the following factor

�nþ 1½ �p¼ exp �hxk=kBTð Þ
exp �hxk=kBTð Þ � 1

� �p

If one uses the average phonon energy �hx to express the compensation of the
energy gap mismatch, �hx = DEsa/p. At low temperature expð�hx=kBTÞ � 1,
expð�hx=kBTÞ=ðexpð�hx=kBTÞ � 1Þ � 1, then the energy transfer probability is
independent of the temperature. However, at a higher temperature, the transfer
probability will be increased. For the transfer processes involving 4–10 phonons,
Yamada [14] fitted the calculation values to the experimental data according to the
above-mentioned factor and the result was satisfactory. For the transfer processes
involving 1–2 phonons, Colins and Di Bartolo [15] observed that the transfer
probability decreases with temperature. By taking into account the particle distri-
bution in the initial and final states, the abnormal temperature dependence can be
well explained. It demonstrates, on the other hand, that (9.34a) is suitable only for
the transfer processes involving large number of phonons.

Auzel and Chen [16] pointed out that the phonon energy in energy transfer and
phonon side band processes is actually lower than that in non-radiative transition
process. They calculated this difference for trivalent erbium in glass ZBLAN and
silicon glass. For trivalent erbium in glass ZBLAN, in the probability calculation of
non-radiative transition, phonon energy of 580 cm−1 should be used while that of
phonon side band or energy transfer, phonon energy can only be 325–350 cm−1.
For trivalent erbium in silicon glass, the former is �hx ¼ 1100 cm�1 while for the
latter it is �hx ¼ 500 cm�1.

9.3 Statistical Theory of Energy Transfer Between Ions

The distance between S and A is different in different locations of the media. To
obtain a formula which can be practically used in the calculation of transfer
probability, it should be based on statistical theory. A detailed procedure to do this
is as follows: First, investigate the rate equation of particle number for a certain S–
A distance to establish an expression of time-dependent particle number; then
statistically average the particle number variation to find out the average expression
of the variation of particle number. Suppose S can be classified into several classes,
in the case that same class S has the same A surrounding. By using (9.18), the
k class S has the following expression of energy transfer probability
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Wk
dd ¼

XNa

i¼1

R6
c

R6
ikssf

ð9:35Þ

The summation is over all the A, where Rik is the distance between the S of the
k class and the A of the i class. Assuming no energy migration among S, the particle
number of S in k class will satisfy the following rate equation:

dNsk

dt
¼ � 1

ssf
1þ

XNa

i¼1

R6
c

R6
ik

 !
Nsk ð9:36Þ

where the first term accounts for the decay of S by spontaneous emission and the
second term corresponds to the decay produced by energy transfer. Integrating
(9.36), then

Nsk ¼ Nskð0Þexp � ssfð Þ�1t 1þ
XNa

i¼1

Rc=Rikð Þ6
" #( )

ð9:37Þ

For the random distribution of A, the probability that the S belongs to the k class is

Pkdk ¼
YNa

i¼1

4pR2
ikdRik

V
ð9:38Þ

The statistical average of Nsk denoted by �Nsk is

�Nsk ¼
Z

NskPkdk ð9:39Þ

In the problem discussed, the condition (ssf)
−1t(Rc/Rik)

6 
 1 is always satisfied. In
this situation, Forster [1] did the integration of (9.39) and obtained the following
result

�Nsk ¼ Nskð0Þexp � ssfð Þ�1t � Ca=Ccð Þ p t=ssfð Þ1=2
h i

ð9:40Þ

where Ca denotes the concentration of A, and Cc is the critical concentration.
On the basis of the above theory, Inokuti and Hirayama [17] assumed a random

spatial distribution of A around S and which is not affected by the distribution of S.
Without considering the energy migration between S, a general number decay
expression of S in fluorescence level for multi-pole interactions (n = 6, 8, 10) was
derived
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�Nsk ¼ Nskð0Þexp � ssfð Þ�1t � C 1� 3
n

� �
Ca=Ccð Þ t=ssfð Þ3=n

� �
ð9:41Þ

The time-variation of S fluorescence intensity, therefore, is

IðtÞ ¼ Ið0Þexp � ssfð Þ�1t � C 1� 3
n

� �
Ca=Ccð Þ t=ssfð Þ3=n

� �
ð9:41aÞ

This expression is also written as

IðtÞ ¼ Ið0Þexp � t
ssf

� ct3=n
� �

ð9:41bÞ

where

c ¼ C 1� 3
n

� �
Ca=Ccð Þs�3=n

sf ð9:41cÞ

In these expressions, n = 6 for dipole–dipole interaction, n = 8 for dipole–quad-
rupole interaction, and n = 10 for quadrupole–quadrupole interaction. The gamma
functions in (9.41) are:

Cð1� 3=6Þ ¼ Cð1=2Þ ¼ p1=2 � 1:77; Cð1� 3=8Þ ¼ Cð5=8Þ � 1:43;Cð1� 3=10Þ
¼ Cð7=10Þ � 1:30:

Note that (9.40) and (9.41) are obtained in the condition of no energy migration
among S.

The characteristic of this energy transfer pattern is: in the initial stage of the
luminescence decay curve of S (i.e. t 
 ssf), ln[I(t)/I(0)] is proportional to t3/s but
with the increase of time, the number of non-excited A around excited S is
decreased. Owing to the fact that the energy transfer probability between S and A is
greatly decreased with the increase of distance between these two ions so that more
S will decay by their luminescent emission and their luminescence decay curve will
become approximately simple exponential decay curve. Here, simple exponential
decay curve means that the exponent of exponential function only involves a linear
term of time, while the non-simple exponential decay curve refers to the nonlinear
term of time appearing in the exponent .That is to say, the total fluorescence decay
curve is divided into two segments of the initial non-simple exponential decay and
the subsequent approximately simple exponential decay. It should be pointed out
that I-H model was obtained under the assumption of without energy migration
between S; it is applicable for the case of low concentration of S and A.
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The decay rates for different interactions are different. The dipole–dipole inter-
action produces the highest decay rate, the dipole–quadrupole interaction has a
lower decay rate, and the quadrupole–quadrupole interaction has the lowest decay
rate. These relations are shown in Fig. 9.3 with exponential coordinate of particle
number versus t/ssf.

9.4 Energy Migration Between Ions

When A and S are coexistent in the sample and the concentration of S is high
enough, the excited energy can migrate among S before transfer to A. This is a
multi-step process. The transfer of excitation energy can be seen as the migration of
exciton among S and the trapping of the exciton at site of A will modify the decay
rule of the excited state population of S. In this section, the main results of the
related theory will be briefly introduced. Generally speaking, there are two kinds of
method to deal with this problem, namely random walk theory and diffusion theory.

First let us discuss the simplest case, in which the S-A interaction is equivalent to
the S-S interaction and belong to the electric dipole–dipole interaction. During the
energy transfer of S ! A, S can also emit photon directly. The energy transfer to A
will be described as exciton random walk to the positions of A (trap). Suppose the
propagating time of the exciton from one ion to another ion is th. The emission
probability of S per second is 1/ss. On the other hand, the possibility of the exciton
fall into the traps for walking to a new lattice position is Ca (the concentration of A).
When the exciton walks to a new lattice position, the probability for falling into the
traps per second will be Ca/th, so that the lifetime of the exciton in this walking
process is th/Ca. Therefore, the number N0 of original exciton will be reduced to
N0exp [−th/(th/Ca)] = N0exp (−Ca); in other words, the decay rate of the exciton

0 1 2 3 4 5 6
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10-1

100

t/t(f)

N
/N
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)

n=10

n=8
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Fig. 9.3 Schematic diagram
of the decay of particle
number of sensitizer for
different types of multi-pole
interaction under the
assumption of Ca/C0 = 1.
Abscissa is in the unit of the
lifetime of S ion
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number by walking to a new lattice position is exp(−Ca). According to mathe-
matical theory of random walk [18], the probability W(0, n) for the n-step random
walk can be expressed as the product of the corresponding probability of random
walk at successive steps

Wð0; nÞ ¼ Wð0; 1ÞWð1; 2ÞWð2; 3Þ. . .Wðn� 1; nÞ ð9:42Þ

The mathematical theory of random walk in lattice has been studied by Montroll
et al. [19] According to their result, the number of lattice positions visited by the
exciton after its n-step random walk (n is a very large number) can be expressed as
Snn (Sn = 0.66 for simple cubic lattice, Sn = 0.74 for face-centered cubic lattice, and
Sn = 0.72 for body-centered cubic lattice). After n-step random walk the decay rate
of the exciton will be

exp �Cað Þ½ �Snn¼ exp �nSnCað Þ

Supposing there are N0 excitons at t = 0, then after time t1 by the trapping effect,
the exciton number will become

N0exp �nSnCað Þ ð9:43Þ

where n = t1/th. On the other hand, after n-step walk, by the direct emission, the
decay factor of exciton is obviously

exp �t1=ssð Þ ð9:44Þ

The exciton number without both trapping and emission will be

N0exp �nSnCað Þexp �t1=ss½ � ¼ N0exp �t1 SnCa=th þ 1=ssð Þ½ � � N0exp �t1=s
0
s

� �
ð9:45Þ

Therefore the fluorescence lifetime of S affected by both energy transfer and
radiation transition will be

s0s ¼
1

1=ss þCaSn=th
ð9:46Þ

Suppose Wrw is the energy transfer probability generated by random walk; W0 and
W denote the transition probabilities without A and the total transition probability of
S in case the coexistence of A and S, respectively, then

W ¼ W0 þWrw ð9:47Þ
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Obviously

Wrw ¼ SnCa=th ð9:48Þ

By the formula introduced previously, the jumping time of exciton is the reciprocal
of energy transfer

th ¼ ssðRss=RcÞ6 ð9:49Þ

where Rc is the critical interaction distance defined in (9.16) and Rss denotes
the distance between S and its nearest neighbor S. It is easy to realize that
(Rss/Rc)

6 = (Cc/Cs)
2, where Cs and Cc are the concentration and critical concen-

tration of S.
If the fluorescence intensities of S without and with the presence of A denoted by

Is0 and Is, respectively, it can be proved that

Is ¼ Is0=ð1þ ssWrwÞ ¼ Is0=½1þ SnCaðCs=CcÞ2� ð9:50Þ

By using the conceptions of exciton jumping and average jumping time,
Brushtein introduced another luminescence decay formula of S in the case of S-S
energy migration probability is higher than S-A energy transfer probability, that is
ass > asa. This is called hopping model [20]

IðtÞ ¼ Ið0Þexp � t
ssf

� n
ffiffi
t

p � K 0t
� �

ð9:51Þ

where K′ is energy transfer probability assisted by energy migration and the values
of n and K′ by the electric-dipole interaction can be expressed as

n ¼ 4
3
p3=2Ca

ffiffiffiffiffiffi
asa

p ð9:52Þ

K 0 ¼ pð2p=3Þ5=2CaCs
ffiffiffiffiffiffiffiffiffiffiffi
asaass

p ð9:53Þ

On the other hand, according to (9.14), by taking into account degeneracy ge of
the excited level and degeneracy gg of the ground level of S, the energy transfer
parameter asa and the energy migration parameter ass for the electric-dipole inter-
action can be expressed as

addsa � 1:36� 10�16cm
fags
n3

gg
ge

� �
Oin

�m4
; addss � 1:36� 10�16cm

fsgs
n3

gg
ge

� �
Oin

�m4

ð9:54Þ

These two parameters also denote as Csa and Css and can also be calculated by
emission and absorption cross-section as follows
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asa � Csa ¼ 3c
8p4n02

gg
ge

� �Z
rðsÞemðkÞrðaÞab ðkÞdk;

ass � Css ¼ 3c
8p4n02

gg
ge

� �Z
rðsÞemðkÞrðsÞab ðkÞdk ð9:55Þ

In the case of energy migration among S has high probability; one can also treat
the energy migration process as diffusion process. Martin et al. [21] used diffusion
model to study energy migration and energy transfer processes for random distri-
bution of ion. The density q(R, t) of excited S satisfy the following equation

@

@t
q R; tð Þ ¼ DsD� 1

ssf
�
XNA

j¼1

Wsa Rs � Raj
� �" #

q R; tð Þ ð9:56Þ

where Ds is a diffusion parameter which characterizes the migration processes
among S, ssf is the lifetime of S and Wsa(Rs − Raj) is the energy transfer probability
from S at position Rs to A at position Raj. The first term in the right-hand side of this
equation expresses the diffusion effect; it has not appeared in (9.36). By using Padé
approximation to solve (9.56), we can obtain

IðtÞ ¼ Ið0Þexp � t
ssf

� 4pCA

3
C 1� 3

n

� �
aðnÞsa t
� �3=n 1þ a1xþ a2x2

1þ b1x

� �ðn�3Þ=ðn�2Þ" #

ð9:57Þ

where x ¼ Ds aðnÞsa

� ��2=n
t1�2=n and the expression of Ds as well as the values of a1,

a2, and b1, for dipole–dipole interaction n = 6, dipole–quadrupole interaction n = 8,
and quadrupole–quadrupole interaction n = 10 respectively are shown as follows:

n Ds a1 a2 b1
6 Ds ¼ 3:376C4=3

s að6Þss
10.866 15.500 8.743

8 Ds ¼ 2:924C2
s a

ð8Þ
ss

17.072 35.860 13.882

10 Ds ¼ 4:559C8=3
s að10Þss

24.524 67.909 20.290

Obviously, when Ds = 0, (9.57) is identical to (9.41) because in this case (9.56) is
actually the same as (9.36).

Yokota and Tanimoto [22] solved (9.56) before Martin for the special case of
electric-dipole interaction and obtained the result of (9.57) for n = 6

IðtÞ ¼ Ið0Þexp � t
ssf

� 4pCa

3
p1=2 að6Þsa t

� �1=2 1þ 10:87yþ 15:50y2

1þ 8:743y

� �3=4
" #

ð9:58Þ
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y ¼ Ds að6Þsa

� ��1=3
t2=3

Equations (9.57) and (9.58) are all referred to as Yokota–Tanimoto model (Y-H
model) in the literature.

In the above expressions, the diffusion parameter Ds is dependent on the S-S
energy migration probability and the concentration of S. In the case of low S
concentration Huber [23] obtained its expression for multi-pole interaction as
follows

Ds ¼ 1
2
ðn� 5Þ�1 4

3
pCs

� �n�2
3

aðnÞss ð9:59Þ

For dipole–dipole interaction, this diffusion parameter is

Ds ¼ 1
2

4
3
pCs

� �4
3

að6Þss ð9:60Þ

After a long enough time t, the fluorescence decay of S will be asymptotically
simple exponential and if S-S energy migration is dipole–dipole process then the
decay rate s−1 follows the following equation

1
s
¼ 1

ssf
þW ðdiffÞ

sa ð9:61Þ

Accordant to the calculation of Huber [23]

W ðdiffÞ
sa ¼ 8:5Cs að6Þsa

� �1=4
D3=4

s ¼ 21CsCa að6Þsa

� �1=4
addss
� �3=4 ð9:62Þ

It can be demonstrated that when ass � asa the hopping model is suitable, while
when ass 
 asa diffusion model is suitable.

The interaction between S increases with the temperature and is proportional to
T 3 [24]. Therefore, the diffusion model can be used to describe the energy transfer
at relatively low temperature, whereas at higher temperature the hopping model
should be used. A typical example is presented in the following.

Hegarty et al. [24] studied the energy transfer rule of Nd3+:PrF3. Nd
3+ con-

centration in this sample is 5 at.%. The emission of Pr3+ is observed under pulse
laser excitation. The investigation of logarithm relation between Wsa (WDA) and

að6Þss =a
ð6Þ
sa að6ÞDD=a

ð6Þ
DA

� �
in the temperature range of 10–13 K showed that the slope of

að6Þss

� �3=4
is in agreement with the result obtained by diffusion model, but at the

temperature higher than 15 K, it should be described by exciton hopping model.
This is shown in Fig. 9.4.
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In some cases, the following rate equations can be used to calculate the energy
transfer probability by means of the data of fluorescence intensity and fluorescence
lifetime

dNs

dt
¼ Ps � Ns

s0sf
� KtNs;

dNa

dt
¼ �Na

s0af
þKtNs ð9:63Þ

where Ns and Na are the particle numbers of S and A in excited state, while s0sf and
s0af denote the lifetime of S and A, respectively. Kt is the transfer rate between S and
A, while Ps is the exciting rate of S. Obviously, in the case of steady state (Ps is
constant), the solutions of Ns and Na are

Ns ¼ Pss0sf
1þKts0sf

;Na ¼ KtPss0sfs
0
af

1þKts0sf
ð9:64Þ

while in the case of pulse excitation, the solutions are

NSðtÞ ¼ NSð0Þexp � 1þKtssfð Þ t
ssf

� �
ð9:65aÞ

NAðtÞ ¼ KtNSð0Þs0sfs0af
s0sf � s0af � Kts0sfs

0
af

exp � 1þKts
0
sf

� � t
s0sf

� �
� exp � t

s0af

� � �
ð9:65bÞ

Fig. 9.4 The variation of exciton transfer versus temperature and the ratio of að6ÞDD=a
ð6Þ
DA in Nd3+:

PrF3 [24]
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The decay of fluorescence intensity with time written by (9.65a) will be

IðtÞ ¼ Ið0Þexp � t
s0sf

� Ktt

� �
ð9:65cÞ

This expression is the same as (9.51) by neglected n(t)1/2; however, the condition
of obtaining (9.51) is ass > asa. Owing to the fact that n = 7.42Ca(asa)

1/2 and K′ =
19.9CsCa(assasa)

1/2, if Cs � Ca the relation K′t � n(t)1/2 is certainly satisfied.
Therefore, when S-S energy migration probability is much higher than S-A energy
transfer probability and the concentration of S is much higher than that of A, the
decay of S fluorescence intensity after doping of A is still a simple exponential type;
the only difference is the decay rate is increased. On the other hand, a conclusion
can be drawn: the premise conditions of using the above rate equation to analyze
energy transfer process are the S-S energy migration probability is much higher
than that of the S-A energy transfer and the concentration of S is much higher than
that of the A. The laser material of Yb3+ ions sensitize Tm3+ ions is one of the
examples which satisfy this condition, because the energy migration between Yb3+

ions is a resonance process; what is more, the overlapping between the emission
spectrum and the absorption spectrum of Yb3+ ion is great, while the energy transfer
between Yb3+ ion and Tm3+ ion is a phonon-assisted process so that ass > asa. On
the other hand, in this kind of laser material, in order to increase the pumping light
absorption efficiency, the concentration of sensitized Yb3+ ion is much higher than
that of the activated Tm3+ ion. Therefore, the above premise conditions for using
rate equation to analyze energy transfer process are satisfied.

Energy transfer rate Kt can also be obtained by fluorescence lifetime measure-
ment. If the fluorescence lifetime of S is ssf with A in the sample, while the
fluorescence lifetime of S is s0sf without A in the sample, then the transfer proba-
bility will be

Kt ¼ s0sf � ssf
ssfs0sf

ð9:66Þ

By using this formula, it is only necessary to obtain the experimental data of
fluorescence lifetime for S with and without A in the sample, respectively. On the
other hand, one can use integrated fluorescence intensities Is and Ia of S and A when
two kinds of ions coexist in the sample. It can be shown that in this case one has the
following expression

Ia
Is
¼ AaNama

AsNsms
¼ ssrNaks

sarNska
ð9:67Þ

where Na and Ns are concentration, while As and Aa are spontaneously transition
probabilities of S and A, respectively; meanwhile, ssr and sar are corresponding
radiative lifetimes. By using measured integrated luminescence intensities Is and Ia,
when two kinds of ions are present in the sample simultaneously and the solutions
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of (9.64) and (9.67), the energy transfer rate in steady-state condition can be
obtained as

Kt ¼ sarIaka
safssrIsks

ð9:68Þ

To analyze the relation between the Yb3+ fluorescence lifetime and the con-
centration of Yb3+ and Tm3+ ions, one can also use the following simple model. To
facilitate the discussion of the problem, the Yb3+ ion is denoted by S while the
Tm3+ ion is denoted by A. First, let us discuss the effect of the presence of A on the
number of S in excited state. Suppose the atomic percentage concentrations of S is
Cs and that of A is Ca and S–S energy migration probability is Wss while S ! A
energy transfer probability is Wsa.

Under certain excitation conditions, the S ! A energy transfer rate is propor-
tional not only to transfer probability Wsa but also to concentration Ca. Suppose the
proportional constant is g, then by the fluorescence decay of S and S ! A energy
transfer, the change rate of S particle in excited state will be

dNS

dt
¼ �NS

ssf
� gCaWsaNS ð9:69Þ

where ssf is fluorescence lifetime of S. In the calculation of the number decrease of
excited state S caused by fluorescence decay, the effect of radiation trapping should
be deducted. Suppose the reabsorption probability of S is Wreab, the number of
excited state S generated by the reabsorption is proportional to the product of
CsWreab and so can be written as g′CsWreab. Therefore, the rate equation of S should
be

dNS

dt
¼ � 1

ssf
þ gCaWsa � g0CsWreab

� �
NS ð9:70Þ

Integrating the above equation, we obtain

NSðtÞ ¼ NSð0Þ exp � 1
ssf

þ gCaWsa � g0CsWreab

� �
t

� �
ð9:71Þ

From the formula (9.13), the ratio of Wsa and Wss is expressed as

Wsa

Wss
¼ s

Rss

Rsa

� �6

¼ s
Cs þCa

Cs

� �2

ð9:72Þ

where Rss is the average separation between different S, Rsa is that between A and S,
and the parameter s only depends on the spectral properties of A and S but inde-
pendent of their concentrations. If Rsc represents the average separation of S at
critical concentration Csc, then by using (9.18), Wss can be expressed as
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Wss ¼ s�1
sf

Rsc

Rss

� �6

¼ s�1
sf

Cs

Csc

� �2

ð9:73Þ

Therefore

Wsa ¼ s
ssf

Cs þCa

Csc

� �2

ð9:74Þ

In addition, the probability of radiation trapping is proportional to the fluorescence
emission probability of S and inversely proportional to the square of ions separation
[25]; therefore it can be written as

Wreab / s�1
sf

1
Rss

� �2

¼ rs�1
sf Csð Þ2=3 ð9:75Þ

Integrating the effects of the above three processes, the S number in excited state at
time t is

NSðtÞ ¼ NSð0Þexp � t
ssf

1þ sgC�2
sc Ca Ca þCsð Þ2�g0rC5=3

s

h i �
ð9:76Þ

That is, after considering the fluorescence emission of S, the radiation trapping and
the energy transfer to A, the fluorescence lifetime of S can be expressed as

s0sf ¼ ssf= 1� g0rC5=3
s þ sgC�2

sc Ca Ca þCsð Þ2
h i

ð9:77Þ

The second term in the denominator of the above expression takes into account the
radiation trapping effect while the third term is the contribution of sensitizing effect
on the fluorescence lifetime.

If one discusses not the S ! A energy transfer but the concentration dependent
fluorescent quenching of S, the same deduction method can be used. However, the
above S ! A energy transfer should be replaced by A ! Q energy transfer (Q
denotes the quenching center). To discuss the fluorescence lifetime of A varied with
the concentration of A and Q, the above parameters r, g, and g′ should be replaced
by r1, g1, and g1′, then

s0af ¼ saf= 1� r1g01C
5=3
a þ s1g1C�2

ac Cq Cq þCa
� �2� �

ð9:78Þ

wheresaf is fluorescence lifetime of A, Cq is the atomic percentage concentrations of
quenching center Q, and Cac is the critical concentration of A. The second term on
the denominator of the above expression takes into account the radiation trapping
effect, while the third term is the contribution of quenching effect on the fluores-
cence lifetime.
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Equation (9.78) can be used to analyze the concentration dependent fluorescent
quenching and radiation trapping effect of Yb3+: YAB crystal [26]. Fluorescence
concentration quenching of Yb3+ ion in this crystal is due to the impurity ion in the
crystal, because the purities of Yb2O3 and Y2O3 raw materials used for growing
crystals were 99.99 and 99.999% respectively. The percent content of impurity ions
in the crystal, especially that of the rare earth impurities, which are difficult to
separate in the raw material, can be seen as proportional to the percentage of Yb2O3

in the crystal. On the other hand, from the crystal growth point of view, it can be
assumed that the point defects which may form the energy traps in the crystal are
also related to the concentration of doped Yb3+ ion. At lower Yb3+ concentration
(e.g. lower than 50%), the concentration of point defect can be seen as proportional
to the Yb3+ concentration while at the Yb3+ concentration higher than 50%, the
concentration of point defect can be seen as decreased with Yb3+ concentration,
because the increase of Yb3+ concentration is equivalent to the reduction of
impurity ion Y3+ from the perfect crystal of YbAB. If the atomic percentage
concentration of Yb3+ ion is CYb then the atomic percentage of fluorescence
quenching center can be assumed as aCYb for the Yb3+ concentration lower than
50%. In (9.78) let Ca = CYb and Cq = aCYb, then the following can be obtained

s0af ¼ saf= 1� r1g
0
1C

5=3
Yb þ s1g1að1þ aÞ2C�2

ac C
3
Yb

� �
� saf= 1� AC5=3

Yb þBC3
Yb

� �
ð9:79Þ

A ¼ r1g
0
1;B ¼ sg1að1þ aÞ2C�2

ac

The measured values of the fluorescence lifetime for Yb3+: YAB powder sample
placed in index matching fluid with different Yb3+ concentrations are listed in
Table 9.1. The experimental data can be fitted to the (9.79) very well. The fitting
parameters are saf = 510 ls, A = 1.89 and B = 95.79. Figure 9.5 is the fitting result

Table 9.1 Yb: YAB crystal fluorescence lifetimes at different Yb3+ atomic percentage
concentrations [26]

CYb (%) sbf (ls) spf (ls) sdf (ls) sr (ls)

5.6 680 / / 600

6.5 960 557 513 606

17.3 910 449 480 652

29.2 237 141 490 620

40.7 194 122 509 616

65.5 20 23 541 575

75.0 77 26 520 613

100 17 23 535 672

sbf, spf, sdf, andsr are the Yb3+ fluorescence lifetime measured values in bulk sample, powder
sample, and diluted powder sample, respectively and radiative lifetime calculated values of 2F5/2
multiplet. The data of sbf are taken from reference [27]
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of the relation of the fluorescence lifetimes at 1038 nm with the Yb3+ atomic
percentage concentration for Yb3+: YAB crystal powder sample at room
temperature.

The above analysis of the effects of concentration dependent fluorescent
quenching and radiation trapping is only fitted to the data of powder sample placed
in index matching fluid. However, due to the fact that the refractive index of the
matching fluid still has some difference from that of the YAB crystal powder, the
internal reflection is still existence, so that A 6¼ 0. Nevertheless, the particle size of
the samples with different Yb3+ concentration is the same; the values of A for
different sample are approximately the same, so the experimental data can be fitted.
The result obtained by this method can also easily explain the data of diluted
powder sample in Table 9.1. All these powder samples are diluted by pure YAB
powder to an average Yb3+ concentration 0.5%. Although the difference of the
distribution of Yb3+ ions in the sample causing the difference in parameter r results
in several times difference of parameter A, but because the Yb3+ concentration is
very low, F = 1 − ACYb

5/3 + BCYb
3 and is always very close to 1 (A = 2.0,

F = 0.9989; A = 20.0, F = 0.9959). This is the reason that the fluorescence life-
times of all these diluted samples are about 510 ls.

In Table 9.1, the fluorescence lifetime of bulk sample certainly cannot be
explained by (9.79). One of the important reasons is in these samples, the defects,
bubbles, and dislocations, which can cause the internal reflection of fluorescence
emission, are different for different crystal grown batches, and even different for the
different parts of the same piece of grown crystal. This complexity makes the the-
oretical model not correctly describe the contribution of radiation trapping effect on
the fluorescence lifetime. However, it can be seen from this table that the fluorescence
lifetime of bulk sample with low Yb3+ concentration is more significantly longer than
that of the powder sample in index matching fluid with same Yb3+ concentration. The
reason for this phenomenon is that in low Yb3+ ion concentration bulk sample the

Fig. 9.5 Room temperature
fluorescence lifetime of Yb3+:
YAB crystal in powder
samples at 1038 nm under
excitation at 930 nm versus
Yb3+ concentration. The
points represent the
experimental data and the
solid curve is the fitting result
from (9.79) [26]
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internal reflection radiation can maintain at a higher intensity for a longer time in spite
of the weak reabsorption of radiation in a single pass.

With the increasing of Yb3+ concentration, the fluorescence lifetime of diluted
samples has a change from longer to shorter and then from shorter to longer. The
reason for this change can be interpreted as: when the concentration of Yb3+ ion is
lower than 50%, the increase of Yb3+ ion concentration corresponds to the increase
of crystal defects; while when the concentration of Yb3+ ion is higher than 50%, the
increase of Yb3+ ion concentration corresponds to the reduction of crystal defects as
has been explained.

The study of energy transfer always involves the calculation of fluorescence
lifetime. It is necessary to discuss the problem of how to calculate this parameter
correctly.

It can be seen from the above discussion that in the case of isolated ions or
energy migration probability between ions is higher than that of energy transfer
probability, the fluorescence decay is described by a simple exponential function.
However, in the general case of energy transfer between ions, such as that shown in
(9.41), (9.51), and (9.58), in addition to a linear term of time, a nonlinear term of
time appears in the exponent of the function of fluorescence intensity. In this case,
the attenuation curve of the fluorescence intensity in the logarithmic coordinate is
not a straight line so that the calculation method of fluorescence lifetime should be
studied. Some one used the following formula to calculate this kind of non-simple
fluorescence decay

sf ¼
Z1
0

IðtÞdt=I0 ð9:80aÞ

It can be shown that this formula is applicable only to the case of simple fluores-
cence decay and can be demonstrated from the definition of fluorescence lifetime.

Fluorescence lifetime is the time in which the fluorescent particle stays in the
fluorescent level. Obviously, the particles transition at different moments has dif-
ferent lifetimes, so that only the average lifetime of the particle in the fluorescent
level has physical meaning. If one divides the fluorescence process into infinite
small time intervals Dt, at moment t the particle number in the fluorescent level is
N(t) and the transition probability for the downward transition is A, then the particle
number downward transition from the moment t to the moment t + Dt will be
N(t)ADt. The fraction of particle having lifetime t relative to the total particle
number of fluorescent level is

NðtÞADt=
Xt¼1

t¼0

NðtÞADt
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Therefore, the average fluorescence lifetime is

sf ¼ lim
Dt!0

Xt!1

t¼0

t
NðtÞADtPt!1

t¼0
NðtÞADt

2
664

3
775

0
BB@

1
CCA ¼

R1
0
tNðtÞAdt
R1
0
NðtÞAdt

¼

R1
0
tIðtÞdt
R1
0
IðtÞdt

ð9:80bÞ

This formula is the correct one for the fluorescence lifetime calculation.
The calculation formula (9.80a) is practically the result of (9.80b) in a special

case when the fluorescence decay satisfy the following equation

IðtÞ ¼ I0e
�At;where sf ¼ A�1

According to (9.80a), the fluorescence lifetime will be

sf ¼
Z1
0

IðtÞdt=I0 ¼
Z1
0

e�Atdt ¼ �A�1
Z1
0

de�At ¼ A�1 ¼ sf

Substitute this simple exponential expression of I(t) into the right side of (9.80b),
then

Z1
0

tIðtÞdt ¼ I0

Z1
0

te�Atdt ¼ �I0A
�1
Z1
0

tde�At ¼ �I0A
�1te�At

��1
0 þ I0A

�1
Z1
0

e�Atdt

¼ sf

Z1
0

IðtÞdt

that is, it agrees with (9.80b). However, if the fluorescence decay satisfy the
following equation

IðtÞ ¼ I0e
�At�Btqðq\1Þ

the results obtained by (9.80a) and (9.80b) are different. It means that in this case
the lifetime obtained by (9.80a) is not consistent with the correct definition of
fluorescence lifetime.
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9.5 Characteristics of Concentration Dependent
Fluorescence Quenching for Self-activated Laser
Crystals

In this section we would like to take the self-activated laser crystals as an example to
introduce the research result of the author to the relation of energy transfer probability
with the chemical composition of the crystals. The so-called self-activated laser
crystal is one kind of crystals inwhich the active ion (A) is the constituent of the crystal
but not doped impurity. It is well known that for many laser crystals such as YAG and
YAP, the concentration of A is usually a few percent in atomic percentage. For the
crystals with higher concentration of A, the quenching effect has to be considered.
A general viewpoint about the requirement for a crystal without quenching effect is as
follows: the shortest separation between the positions which can be occupied by A
should be longer than 60 nm. However, among the crystals satisfying this geometric
condition, what is the relation between the quenching effect and the characteristics of
the host crystals? Auzel [8] reported that for the weak quenching crystals, the crystal
field should be weak enough to satisfy the following inequality

Nv ¼
X
k;q 6¼0

B2
kq

 !1=2

 1800 cm�1 ð9:81Þ

The investigation of emission intensity and fluorescence lifetime has shown that
the strength of quenching effect is proportional to the square of the concentration of
A for the crystals like YAG and YAP, but it is proportional to the concentration of
A for self-activated laser crystals [28]. Obviously, the fluorescence quenching in the
crystals like YAG and YAP is generated by the electric dipole–dipole
cross-relaxation process 4F3/2 +

4I9/2!4I15/2 +
4I15/2, because the probability of this

process is inversely proportional to the six powers of the separation between A, as
shown in (9.14); that is, proportional to the square of the concentration of A.

Auzel [29] discussed this problem by the overlap integral
R
gaðEÞGsðEÞdE in the

expression of resonant energy transfer probability of (9.12). In order to have a
non-zero value of this integral, the energy released by the Nd3+ ions in excited state
should be equal to the energy absorbed by the neighbor Nd3+ ions in the ground
state. It requires that the related pair of energy levels satisfy the matching condition.
It can be clearly seen in Fig. 9.6.

Figure 9.6 shows that the resonant energy transfer condition is E1M = E2M. e1 is
the separation between barycenters of 4I15/2 and 4I9/2 while e2 is the separation
between barycenters of 4F3/2 and

4I15/2. The resonant energy transfer condition can
be expressed as

DE2 � DE1=2þDE3=2 ¼ e1 � e2 ð9:82Þ
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where DE1, DE2, and DE3 are crystal field splitting of 4I9/2,
4I15/2, and 4F3/2,

respectively. The following scalar crystal field parameter is a very interesting
quantity

Nv ¼ 4p
2kþ 1

� � X
k;q 6¼0

B2
kq

" #1=2
�

X
k;q 6¼0

B2
kq

" #1=2
ð9:83Þ

It was found experimentally [28] that no matter the Nd3+ ion sited in what kind of
position, the crystal field splitting of the above spectral terms approximately have
the following relations

DE1 � 0:23Nv;DE2 � 0:27Nv;DE3 � 0:026Nv ð9:84Þ

Substituting the above relations to (9.82), it is easy to find

Nv ¼ ðe1 � e2Þ=0:168

Therefore, if the crystal field is weak enough to satisfy the condition Nv <
(e1 − e2)/0.168, then the resonant energy transfer condition cannot be satisfied. The
fluorescence energy cannot transfer from multiplet 4F3/2 of one Nd3+ ion to mul-
tiplet 4I15/2 of another Nd

3+ ion by cross-relaxation, and the fluorescent quenching
will not occur. This is the reason why the strength of quenching effect of
self-activated laser crystal is not proportional to the square of the concentration of
A. It should be seen that apart from the above-mentioned cross-relaxation, the
fluorescence quenching effect of Nd3+-doped laser crystal may also be the energy
migration between 4F3/2 multiplet of different Nd3+ ions and finally fall into the
“trap” of impurity ions or crystal defects that existed in the crystal. This is the

Fig. 9.6 Schematic diagram
for the energy levels related to
the concentration quenching
effect of fluorescence level
4F3/2 of Nd

3+ ion
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reason why the strength of quenching effect is proportional to the concentration of
A in self-activated laser crystal, because the concentration of the “trap” is usually
proportional to the concentration of doping ions.

However, there is still no answer to the relation of quenching effect with
chemical composition of crystals. The author [30] pointed out that the fluorescence
quenching effect is closely related to the chemical characteristics of ligand anions or
ligand anion groups by using a parameter R, or parameter L = 1/R = r−/(r+Dx) [31]
to measure the strength of quenching effect, where r+ is the radius of the cation
directly connected to the coordination anion, r− is the radius of the anion, and Dx is
the difference of the electronegativity between cation and anion. Taking seven
Nd3+-doped laser crystals as an example, the relation of parameter L with Nd3+

concentration of unit quenching ratio is listed in Table 9.2. If sr indicates the
radiative lifetime of Nd3+ ion in the crystal, sf is its fluorescence lifetime.
Quenching rate of fluorescence is defined as Kq = (sr − sf)/sfsr. The quenching rate
of fluorescence lifetime reduced to half of the radiation lifetime is obviously
K1/2 = 1/sr. Quenching ratio is defined as Rq = Kq/K1/2 = (sr − sf)/sf. It can be
clearly seen that the crystals with larger L value have higher Nd3+ concentration of
unit quenching ratio. NdAl3(BO3)4 crystal has a large value of L and so the
quenching effect is very weak. It has been demonstrated by experiment that this
crystal is a good material for microchip laser [32–36].

To study the relationship between the concentration quenching strength with the
chemical composition of the crystals, the situation when the resonant energy
transfer condition cannot be satisfied should also be discussed. The
single-phonon-assisted energy transfer probability can be calculated by (9.31) and
(9.32) for the cases of the energy mismatch is large and small, respectively. It can
be seen from these formulas that the key quantities are

f ¼ k
@V
@Q

����
����k

� �
; g ¼ k�

@V
@Q

����
����k�

� �

and phonon velocity v. The probability of energy transfer is proportional to (f − g)2

and inversely proportional to v5 or v7. In order to have a weaker cross-relaxation,
the magnitude of f and g should be small and the phonon velocity v should be high.
It has been pointed out [30] that the weak crystal field leads to a small magnitude of
f and g as well as the difference between them. Consequently, it is important to
investigate the chemical composition of Nd3+-doped laser crystals in which Nd3+

ions experience a weak crystal field as well as a high phonon velocity. What are the
relations of the parameter L with crystal field strength and the velocity of phonon?
If the radius r+ of the ligand directly connected to Nd3+ ion is smaller but r- of the
cations is larger, and the difference of the electronegativity Dx between the cation
and the anion is smaller, then the parameter L = r−/(r+Dx) will assume a larger
value. In this case, the polarization effect of the cations on the ligand will be
stronger. It means that the ligands of the Nd3+ ion will have a smaller effective
charge. It is easy to realize that it corresponds to a weak crystal field as well as a
smaller variation of the crystal field potential with the movement of normal
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coordinates so that a smaller value of f − g. On the other hand, the phonon velocity
is inversely proportional to the square root of the compressibility of material while
the compressibility of the ionic crystal is decreased with the decrease of ion–ion
spacing and the increase of electrovalence [37] (the increase of cation valence
corresponds to its electronegativity closer to the electronegativity of anions [38]).
Therefore, for the same oxide (the same r−), the smaller cation radius r+ and smaller
electronegativity difference (a larger parameter L) corresponds to a weak crystal
field (a smaller f − g) and a smaller a compressibility (a higher phonon velocity) of
the host material, that is, a lower phonon-assisted energy transfer probability as well
as a lower cross-relaxation probability and therefore a weak fluorescence concen-
tration quenching effect of Nd3+ ions. Of course, the concentration dependent
fluorescence quenching is an effect conditioned by many factors; a qualitative
parameter cannot be used to describe all the aspects. However, when we discuss the
influence of the chemical composition on the effect of fluorescence quenching,
parameter L is a useful qualitative parameter.
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Chapter 10
Laser and Physical Properties
of Materials

After the study of basis rules of radiative and non-radiative transition and main
spectral properties of the materials, it is necessary to investigate the relationship
between the laser performance and the physical properties of the materials and to
realize the requirements of laser devices on the material properties. To this end, it is
useful to give an outline of fundamentals of solid-state laser, although the detailed
discussion is not in the scope of this book.

10.1 Brief Introduction of Solid-State Laser Principle

There are two types of energy level system of solid-state laser that have been
generally used, that is, the so-called three-level system and four-level system.
Figure 10.1 is a schematic diagram of their energy levels.

In the three-level system, the energy levels of laser operation are the absorption
band, the upper laser level, and the lower laser level. The active ions absorb the
pump light and transit to absorption band then non-radiative decay to the upper
laser level. The radiative transition between the upper laser level and the lower laser
level emits the radiation at laser wavelength. In order to generate laser emission, the
laser material must be placed in a laser resonator and the intensity of pump light
should be strong enough to produce enough population inversion between the upper
and the lower laser levels, so that the gain of the medium at laser wavelength is
enough to compensate for its losses. The probability of the stimulated radiative
transition is proportional to the photon number of the same resonator mode in the
resonator. Therefore, the avalanche-like increase of the photon number will gen-
erate radiation with high intensity, high monochromaticity, high coherence, and
high directionality, that is, the laser emission. The difference between the four-level
system and the three-level system is in the lower laser level. Different from the
three-level system, the low laser level of four-level system is not its ground state.
Typical example of the three-level system is ruby Cr3+:Al2O3; its energy level and
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spectral properties have been discussed in Chap. 7. On the other hand, there are
many examples of four-level system. The neodymium-doped yttrium-aluminum
garnet Nd3+:Y3Al5O12(Nd

3+:YAG) is a typical crystal which has been widely used
in laser technique. Whether the three-level systems or the four-level systems, the
first condition for the laser emission is the pumping should be strong enough to
make the laser material become an optical gain medium.

The early solid-state lasers usually used rare gas discharge lamps as pump
sources (flash lamp is used in the pulse excitation while in the continuous excitation
the arc lamp should be used). Laser material and straight tubular pumping lamp are
usually placed in two focus lines of the elliptical cylindrical light condenser having
inner surface coated with gold film or silver film of high reflectivity. Owing to the
fact that the emission spectra of the pump light and the absorption spectra of the
laser material cannot match well and the gathering efficiency of light is difficult to
reach 100%, the pumping efficiency is always too low. On the other hand, the
unwanted radiation of pumping lamp always rise the temperature of the laser
material.

Figure 10.2 is a schematic diagram of a solid-state laser. The pump source used
is a semiconductor laser (LD), which is an efficient pumping method not producing
too much heat and can keep the good performance of laser material at a lower
temperature.

The rear mirror in Fig. 10.2 is usually in the form of dielectric film deposited
directly on the surface of the laser material. It has high transmission at the

Three−level  system Four−level system 

 lasing lasing

relaxation

relaxation

relaxation

pumping pumping

Fig. 10.1 Schematic diagram
of three-level system and
four-level system of laser

LD light condenser rear mirror laser crystal front

Fig. 10.2 Schematic diagram of a solid-state laser pumped by LD
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wavelength of pumping light but high reflectivity at the laser wavelength. The
output mirror (front mirror) should have certain amount of transmission at the laser
wavelength to output laser emission. If the reflectivity of the rear mirror and front
mirror at the laser wavelength is R1 and R2, respectively, then the laser light with
intensity I0 will become I0R1R2 = Ie−2(−1/2lnR1R2) after back and forth reflection
between the rear mirror and the front mirror. By using loss coefficient c′ = -ln
(R1R2)

1/2 the laser intensity can be expressed as I = I0e
−c′. If R is written as R �

(R1R2)
1/2, in the case of small output coupling -lnR � 1–R, that is, the output loss

c′ = 1–R. Besides the scattering loss of the optical resonator, there are the
absorption and scattering of the impurities and defects that existed in the materials.
All these losses can be represented by b. Therefore, the total loss is

c ¼ 1� Rþ b ð10:1Þ

Photon lifetime in a laser cavity is a conception commonly used in laser science
and technology, and it can be measured by the time the laser intensity in the cavity
decay to e−1 of its original intensity. By the above discussion it is obvious that
passing through the resonant cavity for one time, the laser light intensity I0 will be
attenuated from I0 to I0e

−c. After a period of time t, the distance traveled by the light
is ct/n (n is refractive index of laser material). If the length of the laser material is L,
then in the period of time t the laser light pass through the resonant cavity ct/nL
times, so that the laser light decays into

I ¼ I0 e�cð Þct=nL¼ I0exp � ctc
nL

� �
ð10:2Þ

Obviously, the photon lifetime in the laser cavity is

sc ¼ nL
cc

ð10:3Þ

The quality factor Qc of resonator is defined as the 2p times of the cycle number
in which the energy in the cavity is consumed, that is, Qc = 2pm0I/(dI/dt). By using
(10.2) and (10.3), it is obvious that

Qc ¼ 2pm0
nL
cc

¼ 2pm0sc ð10:4Þ

then

c ¼ 2pm0nL
cQc

ð10:5Þ

Under the excitation of pump source, the inversion concentration between the
upper and the lower laser levels is DN and so the laser material becomes a gain
medium with its gain coefficient ag proportional to DN
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ag mð Þ ¼ a0g mð ÞDN � rem mð ÞDN ð10:6Þ

where a0g mð Þ is the gain coefficient for each inversion particle, that is, the emission
cross-section rem of the laser material and by (5.66) of Chap. 5, it is

rem mð Þ ¼ c2

8pm2n2
Ag mð Þ ¼ c2

8pm2n2sr
g mð Þ ð10:7Þ

The condition of laser generation is obviously the product of the gain coefficient
ag multiplied by the material length L must be equal to or greater than the loss
coefficient c. By using (10.3), (10.6), and (10.7), one can obtain

c3DNsc
8 p n3m2sr

g mð Þ� 1 ð10:8Þ

Among the various parameters of the above formula, from the angle of pump
intensity, what can be changed only is DN. When DN reaches a value which can
satisfy (10.8), it is said that the laser oscillation threshold is achieved, then the
number of inversion particle per unit volume is called the threshold inversion
concentration DNth, that is

DNth ¼ 8 p n3m2sr
c3scg mð Þ ð10:9Þ

In virtue of
R
g mð Þdm ¼ 1, approximately one has g(m) = 1/Dm, therefore

DNth ¼ 8 p n3m2Dmsr
c3sc

¼ p
sr
sc

¼ p
sf
scgf

ð10:10Þ

where p ¼ 8 p n3m2Dm=c3 gives the mode density,sr is the radiative lifetime,sf is the
fluorescence lifetime, and gf is the fluorescence quantum efficiency.

The threshold pump energy and pump power for three-level system and
four-level system will be studied in the following.

For three-level systems, because the lower laser level is ground state, the particle
number per unit volume on the upper laser level must be more than half of the total
particle concentration, that is

Nu ¼ N1=2þDN

where N1 is the active ion concentration in the ground state. Owing to the fact that
N1 is several orders of magnitude greater than DN, one can approximately adopt Nu

� N1/2 and N1 simply is the doping concentration of active ion.
For a four-level system, the lower laser level is not the ground state, at general

temperature, its particle concentration can be neglected compared with the total
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particle concentration in the medium; therefore, the particle concentration difference
between the upper and the lower laser levels is that pumped to the upper laser level
Nu = DN.

In the case of pulse pumping, if the bandwidth of the pump pulse is shorter than
the fluorescence lifetime then the threshold energy eth required by unit volume of
the laser material is equal to the photon energy of the pumping light multiplied by
the particle concentration that must be pumped. Owing to the fact that the active
ions in absorption band and fluorescent energy level have both downward radiative
and non-radiative transitions, therefore, if the particle number involved in the ra-
diative transition of the upper laser level is n, then particles of n=g should be
pumped into the upper laser level. Here g is the total quantum efficiency. g ¼
g1 g2; g1 denotes the quantum efficiency of absorption band and g2 is the quantum
efficiency of the upper laser level, that is, the fluorescence quantum efficiency.
Because usually one has g1 � 1, generally the approximation g � g2 � gf can be
adopted, therefore the threshold energy is expressed as

Eth ¼ ethV ¼ N1�hxpV
2gf

three-level system ð10:11Þ

Eth ¼ ethV ¼ DNth�hxpV
gf

four-level system ð10:12Þ

Substitute the expression (10.10) of DNth into (10.12), the relationship between the
threshold energy and the spectral parameters for four-level system can be obtained
as

Eth ¼ psf�hxpV
scg2f

ð10:13Þ

In the case of continuous pumping, below the threshold, the particle energy in
the upper laser level is only consumed by spontaneous radiative transition and
non-radiative decay in the time interval of fluorescence lifetimesf, therefore the
threshold pumping power Pth = Eth/sf can be expressed as following for three-level
system and four-level system, respectively

Pth ¼ N1�hxpV
2gfsf

three-level system ð10:14Þ

Pth ¼ DNth�hxpV
gfsf

¼ p�hxpV
scg2f

four-level system ð10:15Þ

Most of the pump energy (power) in the three-level systems is consumed in
exciting half of the active ions in ground state to the upper laser level. Only beyond
this threshold the excitation energy can be converted into laser energy. Comparing
with N1/2, DNth can be completely neglected; therefore, the laser threshold of the
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four-level systems is much lower than that of the three-level systems. Moreover, the
four-level systems can operate continuously, but the three-level systems can only
operate in the pulse mode.

The expressions of laser energy, power, and efficiency of four-level system are
derived as follows.

Assuming the energy for exciting the active ions to the upper laser level is E,
then after deduction the energy Eth consumed in the generation of threshold par-
ticles, energy E–Eth will be transferred into laser energy. However, the energy
consumed in the non-radiative decay also should be taken off; that is, the laser
energy obtained should be multiplied by the luminescent efficiency gf . Therefore

EL ¼ psf�hxpV
scgf

E
Eth

� 1
� �

ð10:16Þ

Similarly, it can be concluded that the laser power output in the case of con-
tinuous pumping is

PL ¼ p�hxpV
scgf

P
Pth

� 1
� �

ð10:17Þ

Owing to the fact that reflectivity of the rear mirror and the front mirror at laser
wavelength is R1 and R2, the output laser energy should be

Eout ¼ EL 1� R2ð Þ 1þR1R2 þ R1R2ð Þ2 þ R1R2ð Þ3 þ � � �
h i

¼ EL
1� R2

1� R2 ð10:18Þ

where R � (R1R2)
1/2. Similarly, the output laser power is

Pout ¼ PL
1� R2

1� R2

In order to have a higher laser output energy or power, obviously EL or PL has to
be as high as possible. From the point of view of device design, it is necessary to
reduce cavity loss and making R1 as close to 1 as possible, while in the case of high
pumping energy and power, R2 has to be appropriately increased. On the other
hand, Eth and Pth should be as low as possible for laser material. Section 10.2 will
start from this point to discuss the quality factor of laser material.

In recent years, a new pumping method has been adopted for some Nd3+ laser
crystals, such as Nd3+:YVO4 and Nd3+:YAG; that is directly pump up the active
ions to the upper laser level 4F3/2 of Nd

3+ion [1, 2]. The main advantage is that it
can reduce the heat generated during the operation of laser. This problem will be
further analyzed in Sect. 10.4. It should be pointed out that because the energy level
of absorption band is the upper laser level, the number of energy levels involved in
laser operation is less than that of the original four-level system, whether it is a
1.06 nm laser or a 946 nm laser. However, from the angle of the population
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inversion and the threshold calculation formula, the former is identical to the
four-level system which has been analyzed above, but the latter must be analyzed
and calculated by using the quasi three-level system.

A typical example of a quasi three-level system is Yb3+ laser material. It has
become a hot spot in the development and application study of solid laser materials
after the development of semiconductor laser. Although this material has a higher
threshold than that of the Nd3+ laser material but Yb3+ ion has simple energy level
structure. Theoretically, there is no up-conversion and excited-state absorption and
if there are no other rare earth impurities in the host, there will be no concentration
quenching and its long fluorescent lifetime is beneficial to energy storage.
Moreover, the pump wavelength is close to the wavelength of laser emission, so
that the heat loss of pump energy is very low. On the other hand, the broad emission
and absorption spectra produced by the strong electron–phonon coupling between
the Yb3+ ion and the medium are beneficial to LD pumping, and the laser emission
tuned in a wider wavelength range, which is conducive to the realization of
ultrashort pulse laser output by mode-locked method to realize the laser output of
ultrashort pulse. In recent years, the continuous laser power of Yb3+ laser has
reached kilowatt level and its ultrashort pulse output to reach dozens femtosecond
level is not difficult. Their laser performance in many aspects has been reported in
many literatures. Here it is not necessary to go into details. However, it should be
pointed out that Yb3+ ion is a quasi three-level system. The high proportion dis-
tribution of particle in the lower laser level results in a high laser oscillation
threshold; therefore, search for low threshold host material has become an impor-
tant problem in material research.

From the perspective of energy level structure, this requires a greater separation
between the lower laser level (high crystal field energy level of multiplet 2F7/2) and
the ground state (lowest crystal field energy level of multiplet 2F7/2); consequently,
Yb3+ ion must be doped in the host material with strong crystal field. The problem
of how to find the host material with strong crystal field has been discussed by
many authors from different angles. Here just want to point out that Nd3+ laser
materials have a very rich data of crystal field energy level, so one can use rela-
tionship between the total crystal field splitting of the multiplet 4I9/2 of Nd

3+ ion and
the multiplet 2F7/2 of Yb

3+ ion obtained by Auzel [3]: DE(2F7/2)�1.6D(4I9/2) to find
the Yb3+ laser material with strong crystal field from the Nd3+ laser material having
strong crystal field.

In the Yb3+ ion laser system, the lower laser level is one crystal field energy level
of ground multiplet. There is also a certain absorption coefficient (absorption
cross-section) at the wavelength of laser emission. Obviously, laser gain
cross-section should be deducted by the loss from the absorption at the same
wavelength. If the particle number inversion ratio is f(f = DN/N0), the ratio of
particle number remaining in the lower laser level to the particle number in the
ground state is (N0–DN)/N0 = 1–f, then the gain cross-section for each inversion
particle deducted by ground state absorption cross-section should be
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rg mð Þ ¼ frem mð Þ � 1� fð Þrab mð Þ

The inversion population DNth at laser oscillation threshold in this situation will
be greater than that expressed in (10.10). The general method in this case is to
calculate different rg values for different f numbers according to measured emission
and absorption cross-sections and to investigate in what range of wavelength and
what f value the inequality rg > 0 can be satisfied, as well as at what wavelength rg
reach the maximum, from these data the wavelength of laser emission can be
determined.

Solid-state lasers emitting in the spectral range of 1.5 lm are very promising for
eye-safe laser, range finding, ophthalmology, fiber-optic communication systems,
and optical location. One of the effective ways to realize the laser emission of 1.5
lm band is using Yb3+ ion to sensitize Er3+ion. After Yb3+ ions efficiently absorb
pumping energy at 967 nm and excited to multiplet 2F5/2, by the energy transfer of
Yb3+!Er3+, Er3+ions are excited to their multiplet 4I11/2, then the upper laser level
4I13/2 is populated by 4I11/2!4I13/2 non-radiative decay. Because Er

3+ ion has many
energy levels in the 4f configuration, so that the existent excited-state absorption,
up-conversion, and cross-relaxation as well as Er3+!Yb3+ back energy transfer
processes will produce the deexcitation of 4I11/2 and 4I13/2 multiplets. Therefore,
ideal 1.5 lm laser material must be the Yb3++ Er3+-doped crystals with short 4I11/2
fluorescence lifetime and higher thermal conductivity. This is the reason why the
Yb3+ + Er3+:RAl3 (BO3)4(R = Y, Gd, Lu) crystals with high phonon energy have
been realized as high efficiency 1.5 lm laser crystal [4–14]. The 1.5 lm continuous
laser output with power up to 1 W and low noise laser of power 100 mW has been
realized in this type of crystal. The nanosecond, picosecond, and femtosecond short
pulse laser output are also realized by Q switch and mode lock method [15–18].

10.2 Quality Factor of Solid-State Laser Materials

It can be seen from previous discussion that to evaluate the performance of a laser
material, it should be judged that when the cavity loss is minimum whether it has
low threshold power Pth or low threshold energy Eth, and whether it can absorb
more energy or power from pumping sources. Therefore, one should start with
threshold optical power flux /th to investigate which material’s physical properties
make pump threshold optical power flux /th smaller, The power absorbed by the
laser material per unit volume should be equal to the power consumed at threshold
DNth�hxp=sf , that is

/thrpN1 ¼ DNth�hxp

sf

where rp is absorption cross-section, then
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/th ¼
DNth�hxp

sfrpN1

By using (10.10), the following can be obtained

/th ¼
DNth�hxp

sfrpN1
¼ p�hxp

scrpgfN1
ð10:19Þ

By (10.7) and the formula of mode density given above, the emission cross-section
can transform into

rem ¼ c2

8 p m2n2
Ag mð Þ ¼ n

cpsr

Then the mode density is expressed as

p ¼ n
cremsr

In this way, the threshold optical power flux is

/th ¼
�hxp

csc

n
rpN1sfrem

ð10:20Þ

The second factor n/rpN1sfrem in the above formula only relates to the inherent
properties of laser materials, and so the quality factor M of laser material can be
defined as

M ¼ rpN1sfrem
n

ð10:21Þ

Obviously, the laser material having large M value has a lower laser threshold. The
laser technology generally uses the product sfrem to evaluate the laser threshold; for
example, the comparison of related properties of five laser crystals was listed by
Loutts [19], as shown in Table 10.1.

Table 10.1 Comparison of spectral properties of several laser crystals

Crystal
(cm2s)

Emission cross-section rem
(cm2)

Fluorescence lifetime
sf (s)

Product lose sfrem
(cm2s)

Nd:BFAP >5 � 10−19 3.7 � 10−4 >1.85 � 10−22

Nd:SFAP 5.4 � 10−19 2.98 � 10−4 1.61 � 10−22

Nd:YVO4 10.5 � 10−19 9.8 � 10−5 1.03 � 10−22

Nd:YAG 3.04 � 10−19 2.7 � 10−4 8.3 � 10−23

Nd:YAB 10 � 10−19 2.0 � 10−5 2.0 � 10−23
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If the concentration N1 of doping ion and the absorption cross-section rp have
not much difference, it is possible to use the above product to compare the per-
formance of different laser materials. Some authors [20] used rpN1sfrem as quality
factor of laser performance. Because most laser materials have little difference in
refractive index, the quality factor without refractive index can also be used. To
compare laser performance under the excitation of semiconductor laser, the ab-
sorption cross-section rp at pumping wavelength can also be replaced by the
absorption peak area Ap at pumping wavelength, it is due to the fact that the
emission wavelength of semiconductor laser will change with the temperature, so
that the wider linewidth of absorption peak at pumping wavelength is to help the
stability of laser output. Therefore, the quality factor of the laser performance of the
material can be written as

M ¼ ApN1sfrem
n

; orM ¼ ApN1sfrem ð10:22Þ

Although the product sfrem of some laser materials is not very large, but their
laser performances are still better than those of the materials with larger product of
sfrem. For example, for the Nd3+:YAG crystal, the sfrem is 1.63 times that of the
Nd3+:KGd (WO4)2 (Nd

3+:KGW) crystal, but its Nd3+ ion concentration is only 1/3
of that of the Nd3+:KGW crystal. On the other hand, the pumping light absorption
performance of the Nd3+:KGW crystal is better than that of the Nd3+:YAG crystal.
The linewidth of absorption peak at 809 nm of the former is three times that of the
latter, although the height of absorption peak of the latter is 1.1 times that of
the former [21]. From these data it can be predicted that the laser performance
of the Nd3+:KGW crystal is better than that of the Nd3+:YAG crystal. To confirm
this statement, many experiments [22–27] have shown that the laser performance of
Nd3+:KGW crystal is better than that of the Nd3+:YAG crystal, whether it is
pumped by LD or flash lamp and whether the laser output wavelength is 1067 or
1350 nm. Certainly, owing to the fact that Nd3+:YAG crystal has far superior
thermal performance and so can keep the same performance in high energy or
power level but the laser performance of Nd3+:KGW crystal will be deteriorated
rapidly with the increase of power or energy and can only be applied to the range of
medium and low power. Thermal–optical properties of laser crystals will be dis-
cussed in Sect. 10.4.

10.3 Relationship Between Laser Threshold and Chemical
Composition of Host Materials

In recent years, the output power of semiconductor laser (LD) is increasing rapidly,
they generate laser emission with many different wavelengths, and the price is
dropping rapidly. It promotes the rapid development of LD pumped solid-state
lasers and puts forward the new requirements of relevant laser materials.
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From the point of view of material science, undoubtedly, it is necessary to
understand the special requirements of the structure and chemical composition of
laser material. Nevertheless, each parameter of laser or spectral performance is
related to the static spatial structure of the crystal as well as the lattice vibration and
the electron motion of the crystal; therefore it is very difficult to obtain a quanti-
tative relation theoretically. A practical and feasible method is to analyze the
relationship of the laser-related performance of the material with their atomic and
bonding parameters, in order to build a bridge between the important parameters of
laser performance and the chemical composition of laser materials. A qualitative
empirical relationship of the laser threshold with the atomic parameters of host
crystal which was obtained by the authors [28] will be described in this section.

It can be seen from (10.20) that continuous laser threshold is inversely pro-
portional to the product of stimulated emission cross-section rem and fluorescence
lifetimesf. The relationship of the product remsf with crystal refractive index and
fluorescence spectral linewidth will be analyzed in the following, to find the rela-
tions of optical and spectral parameters with the atomic parameters of host crystal
and then to discuss the possible effect of the chemical composition of host crystal
on the threshold of laser oscillation.

From (5.66) of Chap. 5 and the relationship between spontaneous emission
probability A, fluorescence lifetime sf, and fluorescence quantum efficiency gq; that
is, A ¼ gq=sf , it can be shown that

remsf ¼
gqc

2

8pm2n2
g mð Þ

Substituting the formula of Gauss or Lorentz line shape function g(m) given in
Chap. 6, then

remsf /
gq

n2Dm
ð10:23Þ

From this expression it can be seen that large remsf value is related to high
fluorescence quantum efficiency and narrow emission linewidth as well as small
refractive index of host material. In order to have high fluorescence quantum
efficiency, electron–phonon interaction should not be strong and the effective
phonon energy should not be high. On the other hand, the contribution to the
emission linewidth comes from the effects of lattice vibration and the inhomoge-
neous of crystal field. Except for the group consisting of the atoms with very small
mass, such as the borate group BO3 having especially high vibrational frequency,
the difference of phonon frequency for different oxide materials is within two times
while the different fluorides have a slightly different but much lower phonon fre-
quency. Weaker crystal field will generally lead to weaker electron–phonon inter-
action and higher fluorescence quantum efficiency. If crystals have roughly the
same integrity, it also corresponds to a narrower inhomogeneous line broadening.
At the temperature of laser operation, the contribution to the thermal line
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broadening mainly comes from Raman process; its thermal linewidth can be
expressed by (6.77) and (6.78) of Chap. 6. It can be seen that the thermal linewidth
is proportional to the fourth power of the mass difference factor D.

It is difficult to find out the quantitative relationship between the structure and
the refractive index of material; however, if one can discover some qualitative
relationship between refractive index and such as the parameters of ionic mass,
ionic radius and electrical negativity, it will be helpful to the research of new
materials. As is well known, the refractive index of material is the square root of the
following dielectric tensor

eik ¼ e0dik þ a1uik þ a2ulldik ð10:24Þ

where e0 is the dielectric constant without strain. The second and the third terms in
the above equation are the dielectric tensors related to the strain of material, while
uik is defined as

uik ¼ 1
2

@ui
@Xk

þ @uk
@Xi

� �
ð10:25Þ

where ui and uk are different components of particle displacement vector. Refractive
index can be expressed as the following expression if one does not concern its
anisotropy

e ¼ e0 þ a
@u
@R

� �����
R¼0

ð10:26Þ

The first term in the above expression is the polarizability contribution of the
original dipole of material which is proportional to original dipole moment. With
the increase of the cationic radius r+ the polarizability of the cation increases and
with the increase of atomic number in the same family of periodic table, the
polarizability of cations also increases. (Note that with the increase of the atomic
number in the same family of periodic table, the electrical negativity difference Dx
between cation and anion is increased.) On the other hand, the polarizability of
chemical bond is an increasing function of the difference Dx. Therefore, parameter
G = Dxr+ can be used to measure the dielectric constant e0, that is e0 is an
increasing function of G.

The effect of the difference of host ion mass will be considered as follows. If the
host material is composed of the ions with the same mass, then

@u
@R

� �����
R¼0

¼ iffiffiffiffiffi
M

p
X
k;

kQ kð Þ ð10:27Þ

where M = Nm is the total mass of host material, while N, k, R, and Q(k) are total
particle number, phonon wave vector, coordinate, and canonical coordinate of
lattice point, respectively. The material, in fact, is generally composed of two or
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more than two kinds of ions with different masses. If there are N molecule formula
units in the material and each molecule formula unit has n = na+nb ions, in which
na ions with mass of ma and nb ions with mass of mb while the total mass of the
material is M = N (nama+nbmb). Referring to (10.27), the average strain of the
material as that taken in Chap. 6 will be

@�u
@R

� �����
R¼0

¼ i
n

naffiffiffiffiffiffiffiffiffiffi
Nnm

p
a
þ nbffiffiffiffiffiffiffiffiffiffi

Nnm
p

b

" #X
k

kQ kð Þ ð10:28Þ

The above expression can also be written as

@�u
@R

� �����
R¼0

¼ iDffiffiffiffiffi
M

p
X
k

kQ kð Þ ð10:29Þ

where D is the mass difference factor of host material given in Chap. 6. Obviously,
the second term of the expression (10.26) of dielectric constant is proportional to
D. In summary, the dielectric constant e0 increases with the parameter G, while the
second term of (10.26) increases with the increase of parameter D. The dielectric
constant e and the refractive index of the material with the same anion will be
decreased with the increase of parameter P = r−/GD = r−/(r+DxD) = L/D (where
L = r−/(r+Dx) is given in Chap. 9). The refractive index data of oxide compound
shown in Fig. 10.3 demonstrate that the refractive index is a decreasing function
of P.

From the previous discussion, a conclusion can be drawn that a larger P value
generally corresponds to a lower refractive index and a narrower fluorescence
linewidth. Then by (10.23) it can be seen that it results in a larger product of
fluorescence lifetime and emission cross-section. This is confirmed by the data of
12 laser crystals doped with Nd3+ ion shown in Fig. 10.4. In the calculation of
parameter P, the value of r−/G = r−/(r+Dx) (i.e. the parameter L) must take the
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average value of the simple molecule formula units contained; for example, in the
Y3Al5O12 crystal, its molecular unit can be considered as a complex oxide
molecular unit consisting of 3/2 Y2O3 unit and 5/2 Al2O3 unit, altogether four
simple oxide molecular units, so the average of L is

L Y3Al5O12ð Þ ¼ ½1:5� L Y2O3ð Þþ 2:5� L Al2O3ð Þ�	4

10.4 Thermo-Mechanical and Thermo-Optical Properties
of Solid-State Laser Materials

It has been mentioned in previous section that in high power or high energy
application, the laser performance of YAG crystal is better than that of the KGW
crystal. This is because the laser performance of KGW crystal but not the YAG
crystal is rapidly deteriorated when the temperature is increased. In order to find out
its reason, the effect of thermal properties of materials on the laser performance
should be studied.

In general, the going up of temperature will widen the fluorescence linewidth
and shorten the fluorescence lifetime, and thus increase the laser threshold and
decreases the laser output efficiency. On the other hand, the non-uniform temper-
ature distribution in laser crystal will produce thermal stress, thermal birefringence,
and thermal lens effects.

First, see the heat produced in the laser operation. Take four-level system as an
example; transition from absorption band to the upper laser level is a non-radiative
decay process, and part of excited electronic energy is transferred to the heat of host
material. There are radiative and non-radiative ways for the transition from the
upper laser level to the lower laser level and the proportion of non-radiative decay is
calculated by the following formula
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Wnr

Wr þWnr
¼ 1� gq ð10:30Þ

where Wnr, Wr, and gq are non-radiative decay rate, radiative transition rate, and
fluorescence quantum efficiency, respectively. Obviously, the higher the fluores-
cence quantum efficiency, the less the amount of heat generated by non-radiative
decay. The transition from the lower laser level to ground state is also a
non-radiative decay process; the excited energy will all be changed to heat energy.
If the pump frequency is xp (wavelengthkp), laser frequency is xl (wavelengthkl),
fluorescence quantum efficiency is gq, neglecting the spontaneous emission light
energy scattered out of the laser cavity, then the percentage of pump energy con-
verted to the heat energy (thermal loading) is

pt ¼
xp � gqxl

xp
¼ 1� gqkp

kl
ð10:31Þ

This formula is only applicable to the operation level near threshold. When
operation level much higher than the threshold, the radiative transition rate from the
upper laser level to the lower laser level is much higher than the non-radiative decay
rate between these two levels. The heat generated by non-radiative decay can be
ignored. However, the volume of the pumping area in the laser material is often
larger than that of the laser oscillation. In this case to calculate the overall thermal
loading, the fluorescence quantum efficiency gq in (10.31) should be replaced by the
ratio of the volume of laser oscillation to the volume of pump area. If these two
volumes are well coincident, a value close to 1 can be adopted, even if its fluores-
cence quantum efficiency gq is low. The percentage of pump energy converted to
heat energy by different pump methods can be estimated. For example, the Nd3+ ion
activated crystal or glass pumped by 805 nm semiconductor laser. Suppose in
(10.31) gq ¼ 90%, then for the laser emission at 1064 nm, it can be calculated that
the heat energy generated is 32% of the pump energy. If the same laser material
pumped by rare gas discharge lamp, assuming that the average pumping wavelength
is 590 nm, then the similar calculation shows the heat energy generated is 50% of the
pump energy. If directly pumped to the upper laser level 4F3/2 is adopted, and
supposing the pumping wavelength is 880 nm, then the thermal loading is reduced
to 25%. Obviously, the higher the fluorescence quantum efficiency and the closer the
pump band to the upper laser level, the lower is the thermal loss. Moreover, the lower
thermal load of laser material will reduce the limitation of laser output by thermal
lens effect, thermal broadening of emission spectral line, and shortening of
fluorescence lifetime. For example, the NAB crystal, pumped by laser at wavelength
750, 808 nm and directly pump to the upper laser level 4F3/2 at 882 nm, the slope
efficiency of laser output are 34, 50, and 70%, respectively [29]. For the 946 nm
laser operation of Nd3+:YAG crystal, the advantage of direct pump to the upper laser
level is even greater. It has been mentioned that the pump wavelength is close to the
laser wavelength for Yb3+-doped laser material, and so the thermal loss of pumping
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light is low. Yb3+:YAG crystal lasers at 1030 nm and diode-pumped at 943 nm, the
theoretical thermal loading is pt = 0.09, its thermal loading is lower than half of the
thermal loading of the directly pumped 1064 nm laser of Nd3+:YAG. The
non-radiative center in laser material and the concentration quenching of active ion
will consume the excitation energy and transfer the energy to the heat of host
material. Moreover, because of the presence of unwanted impurity ions or other
absorption centers in the materials, some of the laser energy can also be converted
into heat; all these will further increase the thermal loading of laser material.

Another way to generate heat in laser operation is the up-conversion of laser
upper level. When pump power is low, the probability of up-conversion is very low
and the effect of up-conversion on fluorescence quantum efficiency and heat pro-
duction can be neglected, but at a high pumping level, this effect must be con-
sidered. Jacinto et al. [30] used experiment of thermal lens to study the effect of
energy transfer-assisted up-conversion (ETU) process on the fluorescence quantum
efficiency of NAB crystal and confirmed that the effect of up-conversion on
fluorescence quantum efficiency and thermal loading cannot be neglected at high
pumping level. However, it should be pointed out that there are still some problems
in the calculation of that paper and it should be reconsidered. For example, in their
formula (7) the fluorescence quantum efficiency gq at high power pumping level
was expressed as

gq ¼
g0

1þ bne

where g0 and bne are the fluorescence quantum efficiency at low power pumping
level and the effect of up-conversion on this efficiency, respectively. However, as
has been mentioned, at a high power laser operation level, because of the stimulated
emission transition probability is proportional to laser intensity, so the actual
quantum efficiency is much higher than the fluorescence quantum efficiency mea-
sured by spectroscopic measurements and also related to the pumping power level,
but this fact has not been taken into account. On the other hand, a portion of the
excitation energy carried away by the up-conversion process is changed to the light
of other wavelengths but not the thermal energy. To correctly calculate gq, the
spectra emitted by the up-conversion process must be measured. Of course, the
effect of this process on the fluorescence quantum efficiency and the heat generation
is really a problem that should be studied.

Anyhow, the thermal problems in laser operation cannot be ignored. In addition
to a considerable part of pump energy change into thermal energy, there is some
radiation losses; that is the spontaneous emission loss outside divergence angle of
laser emission and the diffraction losses of laser cavity. The proportional relation
between the thermal power generated and the output laser power can be expressed
as follows [31]
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PQ ¼ vqPout ¼ pqV ð10:32Þ

where pq is the thermal power production per unit volume. The typical value of vq is
between 1 and 4.

Thermal energy generated in the process of laser operation will rise the tem-
perature of laser material. According to thermodynamic formula, the thermal energy
generated and the rise of temperature per second can be expressed as the following
expression

@Q ¼ CpqV@T ð10:33Þ

where Q, Cp, and q denote the thermal energy, the specific heat at constant pressure,
and the density of a material, respectively. If there is a temperature gradient in
x direction, according to the continuity equation of heat flow, the following
equation can be obtained

@Q ¼ pqV þKAc
@T
@x

� �
@t ð10:34Þ

In the right-hand side of the above equation, the first term is the thermal power
generated during the laser operation in the laser medium with volume V and sec-
tional area Ac and the second term is the thermal power transferred into the volume
V which is the product of the thermal conductivity K, the sectional area Ac, and the
temperature gradient ∂T/∂x. Remembering that ∂V/∂x = Ac, deriving the formulas
(10.33) and (10.34) with respect to x and equating the two expressions obtained,
then the following partial differential equation is resulted

@T
@t

¼ vPout

CpqV
þ K

Cpq
@2T
@x2

ð10:35Þ

In general, ∂2T/∂x2 should be replaced by spatial temperature gradient
∇2T = (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2)T, so the following equation is obtained

@T
@t

¼ vPout

CpqV
þ jr2T ð10:36Þ

where thermal diffusion coefficient j is expressed as

j ¼ K
Cpq

ð10:37Þ

Let’s discuss the steady temperature distribution in x direction of a slab-shape
laser crystal. The sectional area of the crystal perpendicular to the direction x is Ac,
the slab has a length l in z direction, width w in y direction, and thickness 2d in
x direction, that is, the coordinates of x direction of the slab center, the upper
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interface, and the lower interface are 0, d, and -d, respectively. The upper and the
lower sides of the slab are cooled by flowing cooling liquid or gas. The pump light
uniform illuminates the slab along x direction from the upper and the lower sides.

By solving differential (10.15) with boundary condition T = Tc for xj j[ dþ dl,
the following temperature distribution in x direction of the laser slab can be
obtained [31]

T xð Þ ¼
Tc þDTs þDT0 1� x2

d2

� �
x
 d

Tc þDTs 1� x�dj j
dl

� �
d
 xj j 
 dþ dl

Tc xj j[ dþ dl

8>><
>>: ð10:38Þ

Between the slab surface and cooling medium, there is a temperature linear tran-
sition layer of thickness dl, which depends on surface parameters, coolant parameters,
and flow condition. By using the above equations, in a continuous pumping case, it
can be shown that the temperature difference between the slab surface and the cooling
medium is DTs = vPout(dl)

2/VK and the steady-state temperature increase at x = 0 is
DT0 = vPoutd/4wKl.

If the laser material in the cooling medium at temperature Tc is a cylinder with
radius r0 and length l, it is cooled by a liquid flowing along the cylinder surface,
then the equation of heat flow will be

@T
@t

¼ vPout

CpqV
þ j

@2T
@r2

þ 1
r
@T
@r

� �
ð10:39Þ

Solving this equation, the temperature distribution in the laser material can be
obtained [31]

T rð Þ ¼
Tc þDTs þDT0 1� r2

r20

� �
r
 r0

Tc þDTs 1� r�r0
dl

� 	
r0 
 r
 r0 þ dl

Tc r[ r0 þ dl

8><
>: ð10:40Þ

The meaning of DTs is the same as the above and DT0 is the steady temperature
increase at r = 0. This function is shown in Fig. 10.5. The temperature is highest at
the center of the rod, then gradually decreased toward the edge of the rod; it is a
parabolic-type function.

In the calculation of formula (10.40), the positive temperature value is adopted
for the two opposite direction of the diameter. Let r2T ¼ �DTs=dl2 in (10.36),
then

DTs ¼ vPoutdl2

pr20 lK
ð10:41Þ
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Substitute (10.40) into (10.36) and consider that r2T ¼ @2T
@r2 þ 1

r
@T
@r obtained by

(10.36) and (10.39), it can be shown that

DT0 ¼ vPoutr20
4KV

¼ vPout

4 p lK
ð10:42Þ

In the case of general pulse pumping, by solving time-dependent thermal con-
duction equation, it can be shown that after switching the pump light, DT0(t) will
decrease with time according to the following formula

DT0 tð Þ ¼ DT0 0ð Þexp � t
s0

� �
ð10:43Þ

where

s0 ¼ r20
4j

ð10:44Þ

Consider that @2T


@r2 þ r�1@T=@r � �DTs=dl2 and @T=@t ¼ @DTs=@T: It can

be shown that after switching the pump light, that is, the first term in the right-hand
side of (10.35) equal to zero, DTs(t) will be decreased with time according to the
following formula

DTs tð Þ ¼ DTs 0ð Þexp � t
ss

� �
ð10:45Þ

where

ss ¼ dl2

j
ð10:46Þ

It can be seen that the temperature increase DT0 (0) and DTs (0) as well as their
decay times s0 and ss are inversely proportional to thermal conductivity K. For the

T( )r

r
0

Tc

r0

Fig. 10.5 Temperature
distribution in the laser rod
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solid-state laser materials,s0 andss are generally of the order of second. Obviously,
for the high energy or high power laser applications, the laser materials should have
high thermal conductivity.

The period Dtp of pulsed laser pumping is generally shorter than 5 ms, that is,
Dtp < <s0 andss, therefore the thermal conduction in the period of pump pulse can
be neglected. If the distribution of pump energy is not uniform, the transient thermal
stress, thermal birefringence, and thermal lens effects will be generated. Therefore
the pump uniformity is very important. Continuous pumping will form a stable
thermal distribution, and its temperature distribution is shown in Fig. 10.5.
Repeated pumping can be divided into two cases: for the case the time interval of
two successive pump pulse is longer than s0, then the temperature distribution and
thermal effect are similar to those of the single-pulse situation; in case of the pump
repetition rate is very high and the time interval of two successive pump pulse is
shorter than s0, the thermal distribution is similar to that of the continuous pumping.

The above equations are not applicable for the end pump technology commonly
used in solid-state laser. In this case, the spatial distribution of pump beam is
axisymmetric, and it is generally a Gauss beam near the diffraction limit
(single-mode laser beam) or the “top-hat beam” of optical fiber-coupled laser diode.
If pump beam is incident to the laser rod with length l and diameter r0 along the z
direction and jab, Pin, wp, and pt are the absorption coefficient of crystal at pump
wavelength, input power, pump beam diameter, and thermal loading, respectively,
when the pump light is a Gauss beam, the thermal energy as a function of r and
z can be expressed as

Q r; zð Þ ¼ 2ptPinjabe�jabz�2r=w2
p

pw2
p 1� e�jablð Þ ð10:47Þ

In case the pump light is top-hat beam, the thermal energy as a function of r and
z can be expressed as

Q r; zð Þ ¼ ptPinjabe�jabz

pw2
p 1� e�jablð Þ ð10:48Þ

for r 
 wp

Q r; zð Þ ¼ 0

for r > wp

The temperature distribution in the laser material can be expressed as [32]

T r; zð Þ � T r0; zð Þ ¼ ptPinjabe�jabz

4pK 1� e�jablð Þ
ln r20

w2
p

� �
þ 1� r2

w2
p
; r
wp

ln r20
r2

� �
; r[wp

8<
: ð10:49Þ
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The temperature distribution along the radius is shown in Fig. 10.6.
The thermo-optic effects on the laser properties of materials should be discussed

next.
First, the quantitative description of thermal stress and its physical effects must

be made; this involves the concepts of stress and strain in physics. If the plane with
normal direction x of an object is subjected to the action of force along direction x,
then the stress of the plane per unit area is referred to as rxx and it will result in the
elongation of the object in the x direction. The strain exx is defined as normalized
length variation dl/l. According to Hooke’s law, the stress rxx is proportional to the
strain exx, that is

rxx ¼ EYexx

or

exx ¼ rxx
EY

ð10:50Þ

The proportion constant EY in the formula is the Young’s modulus. This stress will
lengthen the object in the direction x, while shorten the object in the transverse
direction y. The transverse strain exy is defined as normalized length variation
-dw/w, and the relation between exy and exx is

exy ¼ �mPo
rxx
EY

ð10:51Þ

where mPo is the Poisson’s ratio with a value usually between 0.3 and 0.25
(mPo = 0.28 for Nd3+:YAG, mPo = 0.25 for ruby, mPo = 0.33 for Nd3+:YLF, and
mPo = 0.28 for Yb3+:YAB). Another important concept is shear stress: force in the

Fig. 10.6 Radial temperature
distribution of laser rod
pumped by optical
fiber-coupled semiconductor
laser
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y direction applied to the yz plane will cause a shear stress rxy, which has the
following relation with shear strain cxy

cxy ¼
rxy
GR

ð10:52Þ

where GR is called shear modulus of elasticity and has a relation with Young’s
modulus EY and Poisson’s ratio mPo as follows

GR ¼ EY

2 1þ mPoð Þ ð10:53Þ

The material has a maximum limit stress, and exceeding this limit the material
will produce thermal stress damage. In the case of continuous wave pumping, the
maximum limit stress occurs at the rod surface produced by temperature distribu-
tion in a cylindrical laser rod. As shown in Fig. 10.5, it is [31]

rmax ¼
ffiffiffi
2

p

8p
avEYPout

K 1� mPoð Þl ð10:54Þ

Most of the parameters in the above formula have been described, while a is the
coefficient of thermal expansion. By (10.54), the maximum laser power output
allowed before thermal stress damage of the laser rod can be obtained [31]

Pmax ¼ 8pffiffiffi
2

p lRM

vq
ð10:55Þ

where RM = rtK (1-mPo)/aEY is a measure of the thermal shock resistance of
materials and is referred to as thermal shock resistance parameter. The reference
value of the thermal shock resistance parameter RM for several kinds of laser
materials are: [33] RM(glass) = 1, RM(GSGG) = 6.5, RM(YAG) = 7.9 and
RM(Al2O3) = 100, in the unit of W cm−1.

Obviously, in order to increase the laser output power, the materials with higher
heat shock resistance RM and smaller heat production parameter vq should be
selected and the length l of laser rod better to be longer.

Actually, due to the thermo-optic effect, the laser output power cannot reach the
above maximum value. This is mainly because of that after temperature rising,
spectral linewidth becomes wider and fluorescence lifetime becomes shorter.
According to (10.21), laser material quality factor will be decreased and laser
threshold will be elevated.

On the other hand, it can be seen from (10.40), the temperature of the central
region of laser rod is higher than that of its edge; therefore thermal expansion will
also being larger in the central region and entire laser rod is changed into a convex
lens. In the simple isotropic cases discussed, refractive index change with tem-
perature can be expressed as
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Dn Tð Þ ¼ dn
dT

T � T0ð Þ

Referring to (10.40), the refractive index at the radius r can be expressed as

n rð Þ ¼ n 0ð Þþ dn
dT

T rð Þ � T 0ð Þ½ � ¼ n 0ð Þ � dn
dT

DT0
r
r0

� �2

ð10:56Þ

If the temperature coefficient of refractive index is positive (e.g. in YAG crystal),
the refractive index increases with the increase of temperature; therefore the
refractive index of central region of the rod is higher than that of the rod edge. This
will create a convex thermal lens effect. Following is an analysis of this problem.

Suppose that the optical path variation of the light passing the laser rod includes
the optical path change dnTl via temperature variation, the optical path change
dnPl via photoelastic effect, and the optical path change ndl via thermal expansion.
Because these three kinds of focusing effect are different in calculation, the focal
length fT via temperature variation, the focal length fP via photoelastic effect, and
the focal length fa via thermal expansion should be calculated separately, and then
the total focal length fth by thermal lensing will be

1
fth

¼ 1
fT

þ 1
fP

þ 1
fa

ð10:57Þ

First to calculate dnl, according to (10.56), at the edge of laser rod r = r0 the
variation of refractive index is

n rð ÞT�n 0ð ÞT¼ � dn
dT

DT0
r
r0

� �2

ð10:58aÞ

It can be seen from the above equation that the refractive index in this laser rod
shows a quadratic variation with radius r; therefore this laser rod is equivalent to a
spherical lens. However, the focal length of a lens-like medium with length l, radius
r, and refractive index n0 can be expressed as follows [33]

f � �r2=2l n rð Þ � n 0ð Þ½ � ð10:59Þ

Comparing the equation of (10.59) with (10.58a) and using (10.42) of DT0, it can be
shown that

fT ¼ pr20K
1
2
dn
dT vPout

ð10:60aÞ

dnP via photoelastic effect can be expressed as [33]
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n rð ÞP�n 0ð ÞP¼ � 1
2
n30aCr;/vPoutr

2=pr20Kl ð10:58bÞ

where a and Cr,/ are the thermal expansion coefficient and the photoelastic coef-
ficient of laser rod, respectively. Cr,/ has two values, one for the radial component
and one for the tangential component of polarized light. By using (10.59) and
(10.58b), the focal length fP via photoelastic effect can be expressed as

fP ¼ pr20K
n30aCr;/vPout

ð10:60bÞ

On the other hand, due to thermal expansion, the laser rod change to a biconvex
lens, the focal length f of lens can be usually expressed as [34]

f ¼ 1
n0 � 1ð Þ 1=R1 � 1=R2ð Þ ð10:61Þ

where R1 and R2 are the radius of the front and the rear end face curvature. For the
biconvex lens-like laser rod produced by thermal expansion, R2 = −R1 = −R and
R−1 = −d2l(r)/dr2, by using (10.40), the length l(r) of laser rod varying with respect
to r is expressed as

l rð Þ ¼ al T rð Þ � T 0ð Þ½ � ¼ �alDT0r
2=r20

The curvature of end face will be equal to

R�1 ¼ 2alDT0=r20

Therefore, the focal length fa via thermal expansion can be obtained as follows

fa ¼ 1
2 n0 � 1ð ÞR�1 ¼

r20
4 n0 � 1ð ÞalDT0 ¼

pr20K
n0 � 1ð ÞavPout

ð10:60cÞ

In introducing the above equation, (10.42) has been used. Then by using (10.60a,
10.60b, 10.60c) and (10.57), the total focal length fth of thermal lensing can be
expressed as follows

fth ¼ pr20K
1
2
dn
dT þ a n0 � 1ð Þþ an30Cr;/

� �
vPout

ð10:62Þ

Equation (10.62) is applicable for side pumping laser; this equation is in good
agreement with the experiment of side-pumped Nd3+:YAG rod laser [35]. The
following expression of the focal length of thermal lens for the laser diode end
pumping is derived by Innocenzi [36]. A Gaussian pump beam incident into the
crystal was assumed as follows
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I r; zð Þ ¼ I0exp �2r2=w2
p

� �
exp �jpz
� 	 ð10:63Þ

where jp is the absorption coefficient and wp is the (1/e
2) Gaussian radius of pump

beam. With vPout, the thermal power generated in laser operation, the effective focal
length for entire laser rod can be expressed as

fth ¼
Kpw2

p

vPout dn=dTð Þ
1

1� exp �jpl
� 	

 !
ð10:62bÞ

The thermal lens effect of laser material will decrease laser output and laser beam
quality, especially the TEM00 mode output. In the design of laser devices, some
measures can be taken to reduce the influence of thermal lens effect [37–39].

In the case of crystal, the thermal stress causes the refractive index change with
temperature by photoelastic effect. The anisotropy of refractive index is described
by optical indicatrix in crystal optics. The second-order optical indicatrix tensor
N can be expressed as [40]

N ¼ PE ð10:64Þ

where P is the photoelastic tensor; generally, it is a fourth-order tensor and E is a
second-order stress tensor. For different crystal systems, the above tensors have
different forms (the symmetry of the crystal results in the vanishing of some
components of tensor [40]). The thermal conduction equation of anisotropic crystals
will also be anisotropic. When discussing the lens effect, it is necessary to calculate
the effect for different crystal orientations, respectively. In addition, the thermal
effect of crystal can also cause thermal birefringence [40] and it affects the polar-
ization output of laser. These involved in the design of laser device and can refer to
the literatures and books of laser device.

It is necessary to talk about some microscopic relations of the thermal properties
before the end of this section. Because of laser material is insulator (except for the
semiconductor laser material not discussed in this book), its main mechanism of
thermal conduction is phonon conduction, and the microscopic process of thermal
resistance is derived by the anharmonic interaction of lattice vibration. It can be
demonstrated that the thermal conductivity is proportional to the cubic of Debye
temperature TD and inverse proportional to absolute temperature T and the square of
Grüneisen constant cG [41]

K / T3
D

Tc2G
ð10:65Þ

Therefore, the material with a higher maximum phonon energy will have a
higher thermal conductivity, if it has the same or almost the same anharmonic,
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because �hxmax � kTD. On the other hand, the thermal conductivity can be
expressed as

K ¼ 1
3
Cvvlp ð10:66Þ

where Cv, v, and lp are the specific heat, the phonon velocity, and the phonon mean
free path of the material, respectively. Considering the Debye temperature and
phonon velocity and remembering that the phonon velocity is inversely propor-
tional to the square root of compressibility of materials mentioned in Chap. 9, it can
also be seen that the more compact the material structure, the higher is the thermal
conductivity. It is also true for the same anisotropic crystal, the thermal conductivity
in the direction with compact structure is higher than that in the direction with
looser structure; especially for the material with laminated structure, the thermal
conductivity along the direction of the layer is significantly higher than that in the
direction perpendicular to the layer. On the other hand, thermal expansion of the
crystal also is one of the anharmonic effects and the coefficient a of thermal
expansion can be expressed as [42, 43]

a ¼ cGCv

k
ð10:67Þ

The thermal expansion coefficient is proportional to Grüneisen constant cG and
inversely proportional to the compressibility k of crystal. It is also closely related to
the structure of the material. The more compact the structure, the higher the binding
energy, the smaller the coefficient of thermal expansion. Because the compress-
ibility k is often different in different directions; in the same anisotropic crystal,
there is little difference in Grüneisen constants in different directions. Therefore, the
difference in the coefficient of thermal expansion in different directions often comes
from the different compressibility. The compressibility is increased with the
increase of the distance between ions, therefore in the direction of greater lattice
constant; the coefficient of thermal expansion is often relatively smaller. For
example, the lattice constants of YVO4 crystal are: a = b=7.12Å, c = 6.29 Å, its
thermal expansion coefficients are: aa= 4.4�10−6/K and ac= 11�10−6/K;the Nd3+:
KGW crystal has lattice constants: a = 8.10Å, b = 10.43Å and c = 7.60 Å, its
thermal expansion coefficients are: aa= 4.0�10−6/K,ab= 1.6�10−6/K and ac= 8.5
10−6/K; another example of Yb3+:YAB crystal has lattice constants: a = b=9.295Å
and c = 7.243Å, then its thermal expansion coefficients are: aa= 1.4�10−6/
K,ac= 8.1�10−6/K.

At very low temperature, the anharmonic interaction of lattice vibrations can be
neglected, so the thermal conductivity of the materials is very high. The phonon
mean free path lp is also related to the order degree of the material. The order degree
of a material can be seen from two aspects: first is whether the mass of lattice ions is
uniform; if the masses of lattice ions are equal or approximately equal, then the
phonon mean free path reaches its maximum. The larger the difference of the mass
of lattice ion, the lower the lattice order, the shorter the mean free path lp and the

334 10 Laser and Physical Properties of Materials



lower the thermal conductivity K of the crystal. An obvious example is the com-
parison of the thermal conductivity of yttrium aluminum garnet with that of the
ruby. The density of yttrium aluminum garnet (Y3Al5O12) is 4.55 g/cm3 but the
density of ruby (Al2O3) is only 3.98 g/cm3. However, the thermal conductivity of
the yttrium aluminum garnet is 11 W/m�K which is lower than half of the thermal
conductivity 28 W/m�K of the ruby. One of the important reasons is the masses of
aluminum ion and oxygen ion are very different from that of the yttrium ions while
the ion mass difference is much smaller in ruby. The second factor that affects the
order of a material is the defect in the material. A material with fewer defects will
have higher order degree and so longer phonon mean free path and higher thermal
conductivity, while a material with more defects only has shorter phonon mean free
path and lower thermal conductivity. Especially when the temperature is not high,
the main mechanism of phonon scattering is not the anharmonic lattice vibration but
the phonon scattering by the impurities or defects, so that there is a great difference
in the thermal conductivity of the material with and without impurities or defects.
When active ions enter into the crystal lattice, due to the mass difference between
the active ion and the host ion as well as the other defects introduced by the doping
of the active ion, the mean free phonon path will be greatly reduced, so that the
thermal conductivity is reduced appreciably. This can be seen by the comparison of
thermal conductivity temperature dependence of pure YAG crystal and 0.5 at.%
Nd3+:YAG crystal, shown in Fig. 10.7.

The thermal properties of YAG, YAP, and other laser crystals are studied in
detail by Aggarwal et al. [45]. Table 10.2 lists the data measured at temperature
300 K (the temperature coefficient of refractive index is measured at 1.06 lm),
where Yb3+:YAB data are quoted from Nikogosyan’s book [46]. These data are not
complete; some of these values are not consistent with those published in the
literatures. Actually, due to the different doping concentration of active ion in the
crystal, different measurement wavelength and temperature, different crystal
integrity and optical homogeneity, as well as different measurement methods, the

Fig. 10.7 Comparison of thermal conductivity temperature dependence of pure and 0.5 at.%
Nd3+:YAG crystals [44]
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results obtained by different authors often to be different. However, some data
published in the literature also do not conform to the principles of crystal physics.
For example, the thermal expansion coefficient is a second-order symmetric tensor
which is an isotropic physical quantity in the cubic YAG crystal, while there are
reports of different thermal expansion coefficients in different directions (e.g. the
data quoted in the literature [33]). Certainly, the non-uniform distribution of Nd3+

ions in the crystal or other inhomogeneity in the crystal growth process can lead to
the deviation of the measured data.

Aggarwal et al. [45] obtained a series of the temperature function of thermal
conductivity, thermal expansion coefficient, and the temperature coefficient of
refractive index for laser crystals. For example, the relationship between expansion
coefficient and temperature is

a Tð Þ ¼ M0 þM1T þM2T
2 þM3T

3

The parameters for YAG crystal are M0 = −1.8496, M1 = 4.368�10−2,
M2 = −5.6844�10−5, M3 = 0.

The relationship between the temperature coefficient of refractive index and
temperature is

dn
dT

Tð Þ ¼ P0 þP1T þP2T
2 þP3T

3

The parameters for YAG crystal are P0 = -3.946, P1 = 5.294�10−2,
P2 = −4.5605�10−5, P3 = 0.

Table 10.2 Comparison of thermal performance parameters of several laser materials

Crystal Expansion coefficient a
(10−6K−1)

Temp. derivative of refractive
index
dn/dT (10−6K−1)

Conductivity K
(Wm−1K−1)

YAG 6.14 7.8 11.2

Al2O3 4.4(⊥c), 6.8(//c) 12.8 (E⊥c), 11.8 (E//c) 28

YAlO3 2.32(a axis), 8.0 8(b axis)
8.7(c axis)

7.7(E-a axis), 11.7(E-b axis)
8.3(E-c axis)

11.7(a axis), 10.0 (b axis)
13.3 (c axis)

YLF 14.31 (a axis),
10.05 (c axis)

−4.6 (E-a axis), −6.6 (E-c axis) 5.3 (a axis), 7.2 (c axis)

LuLF 13.6 (a axis), 10.8 (c axis) −3.6 (E-a axis), −6.0 (E-c axis) 5.0 (a axis), 6.3 (c axis)

KGWb

axis
1.9 2.6

KYWb

axis
3.0 2.7

Yb:YAB 8.1(c axis), 4(⊥c axis)
(Yb 1 at.%)

4.7
(Yb 5.6 at.%)
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It is necessary to mention another important physical property of materials, that
is, the hardness of materials. The end surface of laser materials is required to be
processed into a surface with a high degree of parallelism and fineness; it requires
the material to have a high hardness and therefore a high binding energy.

In short, starting from the requirements of laser device, a laser material must
have a high thermal conductivity K, a high thermal diffusion coefficient j, a high
hardness H, a high tensile strength, and a high thermal shock resistance Rm. On the
other hand, it is necessary to have a small coefficient of thermal expansion a and a
small refractive index temperature coefficient. The thermal resistance and thermal
expansion of an insulator are all resulted from the anharmonic effect of lattice
vibration. The thermal conductivity decreases with the increase of the mass dif-
ference of the lattice ions while temperature coefficient of refractive index is pro-
portional to the coefficient of thermal expansion a. The requirements of a small
thermal expansion coefficient, a high thermal conductivity, and a small refractive
index temperature coefficient are consistent. Because of these performance
requirements, an ionic crystal with a higher binding energy, a higher melting point,
and a smaller mass difference of the lattice ions should be adopted as a laser host
material.

10.5 Laser Damage and Nonlinear Optical Properties

Many laser crystals have both laser emission and various nonlinear optical prop-
erties. This section mainly introduces the relationship between the nonlinear optical
properties and laser damage of these crystals, but the nonlinear optical properties of
laser crystals and their applications in laser operations such as self-frequency
doubling, self-frequency mixing, and self-Raman lasers will be described in next
chapter.

In high power or high energy laser operation, the nonlinear optical properties of
a laser material can result in laser beam distortion, self-focusing, self-defocusing,
[47, 48] and material damage. When laser intensity is very high, the nonlinear effect
of dielectric polarization cannot be ignored and the dielectric coefficient of the
material can be written as

e ¼ e0 þ e2E
2 ð10:68Þ

The corresponding refractive index has the following relation

n ¼ n0 þ n2E
2 ð10:69Þ

where E is the electric field intensity of light field. When laser power is very high,
the intensity of E is high enough, and then the second term of the above equation
will produce a nonlinear effect. It should be noted that the intensity of laser beam
often is the strongest at the central part (near the axis). If n2 is positive, the effect of
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nonlinear term makes the refractive index of the material near the central of laser
beam cross-section higher than that of its marginal part. The result of this nonlinear
effect is that the laser beam just like is focused by a series of converging lens. If n2
is negative, the effect of nonlinear term makes the refractive index of the material
near the central of beam cross-section lower than that of the marginal part, then the
result is that the laser beam just like is defocused by a series of divergent lens. The
difference of the refractive index of different points on the cross section of laser
beam caused by the nonlinear effect also produces a phase difference between the
different points in the cross-section of laser beam; thus the wavefront distortion is
produced and the linewidth of the laser beam is increased. The strong lasers can
also generate two-photon absorption, stimulated Raman scattering, stimulated
Brillouin scattering, and other nonlinear optical processes. All these effects will
bring about the loss of laser power or energy. Therefore, the materials with weak
nonlinear optical effect should be selected as the laser host materials of high power
or high energy laser; for example, the crystal with central symmetry or low
refractive index (by the Miller rule, if the linear polarization is small, then the
nonlinear polarization is also small [49]). It is impossible to give a detailed
description to a large number of nonlinear optical effects, but only choose
self-focusing effect for further discussion, because it is directly related to the laser
damage of the material.

The self-focusing of laser beam and its threshold can be described by a simple
model. The main idea of this model is: when the refractive index n0 + n2E

2 inside
the laser beam higher than refractive index n0 outside the laser beam, total internal
reflection will occur at the boundary of laser beam. This total internal reflection will
cancel out the beam divergence due to diffraction and with the increase of the laser
power the laser beam will be further converged to a smaller and smaller beam
width. As shown in Fig. 10.8, the divergence angle of laser beam due to diffraction
is d1, and the incidence angle of total internal reflection at the boundary of the beam
is d2. Obviously, d1 and d2 are supplementary, that is

sin2d1 þ sin2d2 ¼ sin2d1 þ cos2d2 ¼ 1

If the beam width of a laser beam is D then the ideal divergence angle generated
by the diffraction has the following relation

sind1 � 1:22k=n0D ð10:70Þ

δ1

δ2 n0+n2E
2

n0
Fig. 10.8 Schematic diagram
of laser beam self-focusing
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According to refraction law and the refractive index of internal and external laser
beam given above, it is concluded that the total internal reflection of a laser beam on
the boundary must satisfy the following relation

sind2 ¼ n0=ðn0 þ n2E
2Þ ð10:71Þ

The complementarily of d1 and d2 become

ð1:22k=n0DÞ2 þ ½n0= ðn0 þ n2E2Þ�2 ¼ 1 ð10:72Þ

The second term of the above equation can be approximately calculated as
follows

n20=ðn0 þ n2E
2Þ2 ¼ 1=ð1þE2n2=n0Þ2 � ð1� E2n2=n0Þ2 � 1� 2E2n2=n0

ð10:73Þ

then the following equation is established

ð1:22k=n0DÞ2 þ 1� 2E2n2=n0 ¼ 1 ð10:74Þ

Namely, when the electric field intensity of a laser beam is equal to E2 = (1.22k)2/
(2n0n2D

2), the laser beam began to focus. Therefore the threshold electric field
intensity of self-focusing is E2 � (1.22k)2/(2n0n2D

2). Because the sectional area of
a laser beam is pD2/4, the intensity of a laser beam is n0cE

2/8p, so that the threshold
power of self-focusing is

PTH ¼ ð1:22kÞ2c=64n2 ð10:75Þ

It can be seen that this threshold power is proportional to the square of laser
wavelength and inversely proportional to nonlinear refractive index.

One can also approximately calculate the self-focusing threshold of a laser beam
from Maxwell equation of classical electrodynamics [46]. This aspect of narrative
can also refer to textbook published by Yariv [50] or monograph published by
Akhmanov [51].

The appearance of self-focusing makes the diameter of a laser beam decrease
and optical power density increase rapidly; therefore many physical processes
introduced by strong laser including stimulated Raman scattering, stimulated
Brillouin scattering, high-order harmonic generation, and a series of element
excitation processes will take place. After absorbing strong laser energy, high
temperature thermal effects such as the emission of electron, ion, or, molecule and
the formation of plasma of a medium can be produced. Therefore, the laser beam
self-focusing is closely related to the laser damage of a medium. The relationship
between the self-focusing of laser beam and the damage of a material will be simply
discussed in the following.
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It is generally believed that laser damage is caused by the following three kinds
of mechanism: first is the local fracture of a material caused by high-intensity
ultrasonic phonon generated by stimulated Brillouin scattering; second is the
defects or impurities in a material absorbing the laser energy then the local tem-
perature rise up to tens of thousands degrees and thus the damage is caused by the
explosion of heat shock wave or micro plasma; the third is that under extremely
high laser power, the electric field intensity of laser radiation is close to or even
higher than that of the atom itself, then the nonlinear effect has become very strong
that the multi-photon absorption excites electrons in some atoms into the conduc-
tion band or even ionization. The resulting electrons accelerated by high-intensity
laser field will generate the phenomenon of electron avalanche, similar to the
dielectric breakdown under strong static electric field. No matter what kinds of
mechanism, laser damage can occur only at sufficiently high laser power density.
When laser beam is incident into an optical material, the power density of the laser
may not reach the threshold of laser damage, but after going through a distance of
the medium, the self-focusing effect will increase the power density of laser beam
which entirely possible to reach or exceed the damage threshold. The material with
positive temperature coefficient of refractive index (dn/dT > 0) may produce ther-
mal lens effect due to the absorption of laser light by impurities and defects
appeared. This is the reason of laser damage threshold on the incident surface is
higher than that of the exit surface for some crystals and glasses.

One direct example of the relation of the damage threshold of laser self-focusing
with laser wavelength is that after frequency doubling by using KDP or other
nonlinear optical crystal the damage threshold is lower than that by using laser
beam without frequency doubling. When the second harmonic laser of power
105 W focuses into ruby or sapphire crystal, some 1 cm long, 10 lm diameter
filaments and a long string of cracks along the path of the light can be observed.
However, the same power of laser without frequency doubling focus into the same
materials cannot observe this phenomenon. As mentioned above, the damage
threshold of laser self-focusing is proportional to the square of laser wavelength;
obviously after frequency doubling, the damage threshold of laser self-focusing will
be decreased four times, and this can explain the observed phenomenon. Of course,
not all the laser damage of different materials results from beam self-focusing. By
using laser pulse of single longitudinal mode and TEM00 transverse mode at
wavelength 1064 nm with width of 9.9 ns, Do and Smith [52] observed the laser
damage threshold of undoped and Nd3+, Cr4+, Yb4+-doped YAG crystals and
ceramics. The relevant parameters of YAG crystal were used to calculate damage
threshold by laser self-focusing and damage threshold by stimulated Brillouin
scattering. The results are higher than the actual observed damage threshold; while
the multi-photon ionization and avalanche ionization induced by the light electric
field heating electrons of conduction band can successfully illustrate the experi-
mental data of single-pulse excitation. As for the damage threshold of continuous
multiple pulse excitation lower than that of the single excitation, they considered
that the cumulative damage may be due to the distribution of electrons to low
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energy and long life self-trapping exciton states; their ionization is easier than that
of the valence electrons.

Briefly, in order to satisfy the requirements of laser application, laser materials
must have the appropriate mechanical, thermal, and optical properties. The property
requirements of solid-state laser material are listed in Table 10.3 for reference.

Table 10.3 The property
requirements of solid-state
laser material

Host material

1. Suitable size can be prepared easily and economically
2. Stable and durable during laser operation
3. Have chemical stability under light radiation, heating and
mechanical processing
4. Better thermal properties:

(1) high thermal conductivity,
(2) high thermal diffusion coefficient
(3) small thermal expansion coefficient

5. Better mechanical properties:
(1) High stress rupture limit and high tensile strength
(2) Small stress optical coefficients
(3) High laser damage threshold (for the material used in

high energy and high power laser)
(4) high hardness

6. Better optical quality:
(1) Minimum packages, defects, and other scattering

centers
(2) Minimum absorption at laser and pump wavelength
(3) Small refractive index temperature coefficient

Active ion

1. Valence and radius of active ion can match that of the
substituted host ion
2. Can be well-distributed in the host material
3. High ground state (but no excited state) absorption at
pumping wavelength and minimum ground state or excited state
absorption at laser wavelength
4. Small quantum defect to make high efficiency population of
metastable level and reduce thermal loading
5. Having an appropriate metastable state lifetime to make full
use of all the pump energy
6. Can generate radiation at laser wavelength with high
quantum efficiency
7. Emission line with linewidth and intensity both meet the
requirements of laser device.
8. Have suitable ion–ion interaction to achieve the maximum
pumping absorption and minimal quenching

10.5 Laser Damage and Nonlinear Optical Properties 341



References

1. V. Lupei, N. Pavel, T. Taira, Opt Comm. 201, 431 (2002)
2. V. Lupei, N. Pavel, T. Taira, Appl. Phys. Lett. 2002(81), 2677 (2002)
3. F. Auzel, in 2000 Proceeding of the 2nd International Symposium On Laser, Scintillator and

Nonlinear Optical Materials (Lyon, 2000), pp. 28–31
4. N.A. Tolstik, V.E. Kisel, N.V. Kuleshov et al., Appl. Phys. B 97, 357 (2009)
5. Y.J. Chen, Y.F. Lin, J.H. Huang et al., Opt. Express 18, 1370 (2010)
6. Y.J. Chen, Y.F. Lin, J.H. Huang et al., Opt. Express 21, 18919 (2013)
7. K.N. Gorbachenyo, V.E. kisel, A.S. Yasukevich, et al., Opt. Lett. 38, 2446 (2013)
8. Y.J. Chen, Y.F. Lin, J.H. Huang et al., Opt. Lett. 40, 4927 (2015)
9. Y.J. Chen, Y.F. Lin, J.H. Huang et al., Opt. Express 23, 72401 (2015)

10. Y.J. Chen, Y.F. Lin, J.H. Huang et al., Opt. Express 2017(25), 17128 (2017)
11. J.H. Huang, Y.J. Chen, H. Wang et al., Opt. Express 2017(25), 24001 (2017)
12. J. Huang, Y. Chen, Y. Lin et al., Opt. Lett. 43, 1643 (2018)
13. Y.J. Chen, Y.F. Lin, J.H. Huang et al., Opt. Express 26, 419 (2018)
14. Y.J. Chen, Y.F. Lin, Z.M. Yang et al., OSA Contin. 2, 142 (2019)
15. N.A. Tolstik, S.V. Kurilchik, V.E. Kisel et al., Opt. Lett. 32, 3233 (2007)
16. Y. Li, J. Feng, P. Li et al., Opt. Express 21, 6082 (2013)
17. Y. Chen, Y. Lin, Y. Zou et al., Opt. Express 22, 13969 (2014)
18. A.A. Lagalsky, V.E. Kisel, A.E. Jroshin et al., Opt. Lett. 33, 83 (2008)
19. G.B. Loutts, C. Bonner, C. Meegoda et al., Appl. Phys. Lett. 71, 303 (1997)
20. F. Auzel, in ed. by B. Di Bartolo, Spectroscopy of Solid-State Laser-Type Materials. (Plenum

Press, New York, 1987)
21. V. Kushawaha, A. Banerjee, L. Major, Appl. Phys. B 56, 239 (1993)
22. Y. Chen, L. Major, V. Kushawaha, Appl. Opt. 35, 3203 (1996)
23. O. Musset, J.P. Boquillon, Appl. Phys. B 64, 503 (1997)
24. O. Musset, J.P. Boquillon, Appl. Phys. B 65, 13 (1997)
25. V. Kushawaha, Y. Yan, Y. Chen, Appl. Phys. B 62, 533 (1996)
26. Z.D. Luo, X.Y. Chen, C.Y. Tu, et al., Chin. Phys. Lett. 17, 888 (2000)
27. X. Mateos, P. Loiko, J.M. Serres et al., IEEE. J. Quant. Elect. 53, 1 (2017)
28. Z.D. Luo, Y.D. Huang, Opt. Comm. 206, 159 (2002)
29. Z.D. Luo, Y.D. Huang, M. Montes, D. Jaque, Appl. Phys. Lett. 85, 715 (2004)
30. C. Jacinto, T. Catunda, D. Jaque et al., Phys. Rev. B 72, 235111 (2005)
31. A. Penzkofer, Prog. Quantum Electron. 12, 291 (1988)
32. Y.F. Chen, T.M. Huang et al., IEEE. IEEE J. Quantum Electron. 33, 1424 (1997)
33. W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer Verlag, Berlin, 1996)
34. M. Born, E. Wolf, principle of Optics, 5th edn. (Pergamon Press, Oxford, 1975)
35. X.B. Wang, X.J. Xu, X. Li, et al., Appl. Opt. 46, 5237 (2007)
36. M.E. Innocenzi, H.T. Yura, C.L. Fincher, Appl. Phys. lett. 56, 1831 (1990)
37. J.D. Foster, L.M. Osterink, J. Appl. Phys. 61, 3656 (1970)
38. T. Chin, R.C. Morris, O. Kafri, et al., in Technical Digest of the Conference on Lasers and

Electro- Optics CLEO’86. (California, San Francisco, 1986), p. 212
39. I. Moshe, S. Jackel, R. Lallouz et al., Proc. SPIE 1997(3110), 238 (1997)
40. J.F. Nye, Physical Properties of Crystals, their Representation by Tensors and Matrices

(Clarendon Press, Oxford, 1957)
41. G. Leibfried, E. Schloemann, Nachr Ak Wiss Gottingen. Math. Phys. 11a, 71 (1954)
42. P.G. Klemens, in Solid State Physics, vol. 7, eds. Seitz, Turnbull, (Academic Press, New

York, 1958)
43. C. Kittel, Introduction to Physics, 5th edn. (Wiley, New York, 1976)
44. B.S. Wang, H.H. Jiang et al., Eur. Phys. 39, 23 (2007)
45. R.L. Aggarwal, D.J. Ripin, et al., J. Appl. phys. 98, 103514 (2005)

342 10 Laser and Physical Properties of Materials



46. D.N. Nikogosyan, Nonlinear Optical Crystals-A Complete Survey (Springer
Science + Business Media, New York, 2005)

47. R. Menzel, Photonics—Linear and Nonlinear Interactions of Laser Light and Matter
(Springer, Berlin, 2001)

48. Z.D. Luo, Optoelectronic Technology (Internal publication of the Fujian Institute of the
Research on the Structure of Mater), First Issue 27, (1973) (in Chinese)

49. Y.R. Shen, The Principles of Nonlinear Optics. (Wiley, 1984)
50. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, 1989)
51. S.A. Akhmanov, R.V. Khokhlov, A.P. Sukhorukov, Laser Handbook, vol. 2 (North–Holland

Publishing Company, Amsterdam, 1972), p. P1151
52. B. Do, A. Smith, Appl. Opt. 48, 3512 (2009)

References 343



Chapter 11
Nonlinear Optical Properties of Laser
Crystals and Their Applications

As mentioned above, many laser crystals have nonlinear optical properties and so
can double, mixing, or transform the frequency of laser beam by second harmonic
(SH) and stimulated Raman scattering (SRS) effects. With the development of laser
technology, the study on these effects and their applications has become increas-
ingly extensive and in-depth because of its important significance in technology.

More laser applications require the devices to be more portable, more compact,
and easier to be adjusted and used. To meet these requirements is the key to expand
laser application, because small and portable devices are easy to be used in more
occasions. To concentrate the generation and modulation function of laser beam in
the same crystal, no doubt that it will bring the benefits of small, lightweight, easy
to be adjusted and used. This requires that a crystal has both the performances of
laser generation and the modulation of spatial and temporal characteristics. In this
chapter, we first discuss the combination of laser emission with frequency doubling
and mixing, then the combination of laser emission with SRS effect. The emphasis
will be placed on the physical principle rather than technical aspect, a relatively
simple model is adopted, and so only the most influential factors are considered
while some problems that must be considered in practical application are neglected.

As it is well known, blue and green lasers are an urgent need in information
technology and many other laser applications. At the start of the study, it is found
that to directly generate the laser emission at such wavelengths is more difficult than
to generate near-infrared laser emission and then to double or mix the frequency of
fundamental laser emission. Technically, blue and green laser beams are generally
produced by an infra laser beam generated by one laser crystal, then through
frequency doubling, mixing, or optical parametric oscillation by another nonlinear
crystal. If the second-order nonlinear optical coefficient of the laser crystal is large
enough, then can the laser beam with double frequency be obtained by the fre-
quency doubling effect of the laser crystal itself, that is, generating the so-called
self-frequency doubling (SFD) laser beam? The answer is affirmative. Johnson [1]
in 1969 and Dmitriev [2] in 1979 published, respectively, their laser SFD results by
using Tm3+ and Nd3+ ion activated LiNbO3 crystal. Of course, the SFD efficiency
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of this crystal was still very low. Dorozhkin [3] in 1981 first did the SFD experi-
ment of Nd3+:YAl3(BO3)4 (NYAB) crystals. Because the concentration of Nd3+ ion
was too high, the self-absorption at the wavelength 0.53 lm was serious, so he only
obtained the SFD laser at 0.66 lm generated by the frequency doubling of fun-
damental laser at 1.32 lm. Lu et al. [4] in 1986 grew this crystal with a Nd3+ ion
concentration lower than 20% atomic ratios and realized the 0.53 lm SFD laser
output pumped by pulsed dye laser, but the doubling efficiency is still low. The
author [5, 6] pointed out that the Nd3+ ion concentration in laser crystal influences
not only fundamental laser output level and luminescence concentration quenching
effect but also nonlinear optical coefficients, and all aspects of the effect must be
taken into account to determine the optimum Nd3+ concentration in NYAB crystal.
Both suitable Nd3+ concentration and suitable crystal growth method were adopted
and the 1.06 ! 0.53 lm frequency conversion of NYAB crystal pumped by an
incoherent light source—a common pulse xenon lamp—was realized in 1988 [5, 6].
Since then, the SFD laser crystal attracted the attention of many scientists, and a lot
of research work has been carried out on crystal spectral properties, energy level
structure, laser experiment, and the application of diode pumping of NYAB and
NGAB (Nd3+:GdAl3(BO3)4) crystals [7–24]. Later is the work of Bartschke [24]
who obtained the green laser output of 225 mW by using an NYAB crystal pumped
by 1.6 W LD laser and at the same time obtained the green laser output of 450 mW
by using the same crystal pumped by 2.2 W Ti3+:sapphire laser. It is shown that the
SFD laser has practical application in laser technology. The SFD and self
sum-frequency mixing (SSFM) properties of the Nd3+ and Yb3+ ions-activated
MgO-LiNbO3, GdCOB (Ca4GdO(BO3)3), YdCOB (Ca4YO (BO3)3), and YAB
crystals were also studied by many authors [25–42]. 1.1 W green laser output was
obtained from Yb3+:YAB crystal, and its light–light efficiency reached 10% [40].
Moreover, a 510–545 nm green/yellow wide tuning laser was obtained in Yb3+:
YAB crystal [41]. GdCOB and YCOB crystals have smaller walk-off angle and
large crystal can be grown by Czochralski method in a relatively short period of
time. Among them, the performance of Yb3+:YCOB is better than Nd3+:YCOB,
while Nd3+GCOB is better than Yb3+:GCOB. A 1.35 W green laser output was
obtained by the SFD of Nd3+:GdCOB crystal with maximum optical conversion
efficiency of 17% [42] and it has application prospect of laser display, and so on.
On the other hand, Capmany et al. [43, 44] used quasi-phase matching method to
achieve SFD and SSFM laser output in the non-periodic polarization Nd3+:LiNbO3

crystal. This quasi-phase matching method can not only make use of the larger
nonlinear optical coefficient d33 in LiNbO3 crystal from the consideration of non-
linear optical conversion efficiency, but also take advantage of stronger funda-
mental polarization luminescence in a crystal from the angle of the fundamental
laser generation.

In this chapter, NYAB crystal will be taken as an example to introduce the
relationship between fundamental laser emission and frequency doubling (mixing)
laser generation in a nonlinear laser crystal, the effect of active ion doping on the
nonlinear coefficients of laser crystal, the selection of the optimum concentration of
active ion, as well as how to efficiently generate self-doubling (mixing) laser and its
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relationship with crystal structure and general physical properties of crystal. In the
end, the basic knowledge about the composite effect of laser and stimulated Raman
scattering (self Raman frequency shift) is introduced.

11.1 Second-Order Nonlinear Optical Effect of Crystal

In general, nonlinear optical effects include frequency doubling, frequency mixing,
optical parametric process, stimulated Raman scattering, stimulated Brillouin
scattering, and so on. The following is a discussion starting from second-order
nonlinear optical effect, especially frequency doubling effect and by using Maxwell
equation of electromagnetic wave.

By the electrodynamics, in a dielectric medium (specific conductance r = 0,
electric current i = 0), the magnetic and electric field vectors of electromagnetic
wave satisfy the following equations

r�H ¼ 1
c
@D
@t

ð11:1Þ

r � E ¼ � 1
c
@H
@t

ð11:2Þ

D ¼ Eþ 4 pP ð11:3Þ

If we only consider linear and second-order nonlinear polarization, polarization
intensity P can be expressed as

P ¼ v 1ð ÞEþ v 2ð ÞEE ð11:4Þ

The second-order polarization susceptibility v(2) in (11.4) is a second-order
tensor, and one component of P can be expressed as

Pi ¼ v 1ð ÞEi þ v 2ð Þ
ijk EjEk ð11:5Þ

Because there is no free charge in the medium, ∇�E = 0. By calculating the curl
of both sides of (11.2) and using formula ∇ � ∇ � E = ∇∇�E−∇2E and (11.1), the
following can be obtained

r2E ¼ 1
c2

@2D
@t2

ð11:6Þ

Discussing only the propagation of light waves along the z direction and
assuming a plane wave approximation can be used, the electric field is constant in
the x and y direction, and so the electric field intensity is taken as the following form

11 Nonlinear Optical Properties of Laser Crystals … 347



E xmð Þ
l z; tð Þ ¼ 1

2
Eml zð Þexp i xmt � kmzð Þ½ � þ c:c ð11:7Þ

where m in the above formula is the label of the frequency of different interaction
laser beams (m can be 1, 2, 3) and l denotes the different electric field components
of a laser beam (l can be i, j, k). In the calculation of (11.6), a slow-varying
amplitude approximation should be used; that is, assuming that the variation of the
light wave amplitude with z is small enough, the following inequality is satisfied

d2EmðzÞ=dz2\\kmdEmðzÞ=dz

The second-order derivative of Eml(z) with respect to z can be ignored, then

r2E x1ð Þ
1i z; tð Þ can be expressed as

r2E x1ð Þ
1i z; tð Þ � � ik1

dE1i zð Þ
dz

þ 1
2
k21E1i zð Þ

� �
exp i x1t � k1zð Þ½ � þ c:c ð11:8Þ

On the other hand, by using e ¼ 1þ 4pv 1ð Þ� � ¼ n2 and k ¼ nx=c, the right-hand
side of (11.6) becomes

� 1
2
k21E1i zð Þexp i x1t � k1zð Þ½ � � 2p

c2
x2

1v
2ð Þ
ijk E3jE

�
2kexp i x1t � k3 � k2ð Þz½ �f gþ c:c

ð11:9Þ

It has been assumed that x1 = x3−x2 in the above equation. Let (11.8) is equal to
(11.9) and eliminating the same terms on both sides of the equation obtained, the
following equation can be obtained

dE1i zð Þ
dz

¼ �i
2px1

n1c
v 2ð Þ
ijk E3jE

�
2kexp �i k3 � k2 � k1ð Þz½ � ð11:10Þ

Similarly, the following two equations can also be obtained

dE2k zð Þ
dz

¼ �i
2px2

n2c
v 2ð Þ
kij E

�
1iE3jexp �i k3 � k2 � k1ð Þz½ � ð11:11Þ

dE�
3j zð Þ
dz

¼ þ i
2px3

n3c
v 2ð Þ
jik E

�
1iE

�
2kexp �i k3 � k2 � k1ð Þz½ � ð11:12Þ

Remembering that light intensity is equal to the speed of light multiplied by its
energy density

I ¼ c
n
q ¼ ce

8pn
E2 ¼ cn

8p
E2
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By using three equations of (11.10) to (11.12), it is clear that each laser beam is
suitable for the following form of equation

dI x; zð Þ
dz

¼ cn
8p

E x; zð Þ�dE x; zð Þ
dz

þE x; zð Þ dE x; zð Þ�
dz

� �

Consider the situation that the laser beams 1, 2, 3 only have one electric field
component and are not equal to zero. After determining the crystal orientation, the
actual effect of tensor vijk

(2) can be represented by tensor veff
(2). The function relation

between veff
(2) and vijk

(2) which depends on the symmetry of the crystal and the phase
matching condition will not be discussed here. By using the relation between the
complex amplitude phases quoted from YR Shen’s book [45] in the case without
incident light of frequency x3, the following equation can be obtained by (11.10)

dI x1ð Þ
dz

¼ � 4px1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

cn1n2n3

r
v 2ð Þ
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x1ð ÞI x2ð ÞI x3ð Þ

p
cos k3 � k2 � k1ð Þz½ � ð11:13Þ

Similarly

dI x2ð Þ
dz

¼ � 4px2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

cn1n2n3

r
v 2ð Þ
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x1ð ÞI x2ð ÞI x3ð Þ

p
cos k3 � k2 � k1ð Þz½ � ð11:14Þ

dI x3ð Þ
dz

¼ þ 4px3

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

cn1n2n3

r
v 2ð Þ
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I x1ð ÞI x2ð ÞI x3ð Þ

p
cos k3 � k2 � k1ð Þz½ � ð11:15Þ

When x3 = x1 + x2 it is obvious that

dI x3ð Þ
dz

þ dI x1ð Þ
dz

þ dI x2ð Þ
dz

¼ 0 ð11:16Þ

It means that in the process of a laser beam of frequency x1 interacts with a laser
beam of frequency x2 to produce a laser beam of frequency x3, the total energy is
conserved.

From the previous analysis, one can see clearly that the energy of laser beams
with different frequencies can be converted to each other due to the existence of
nonlinear polarization.

Now take a look at some of the characteristics of the second harmonic generation
and the condition to achieve phase matching. For the frequency doubling process
x1 = x2 = x, x3 = 2x; in this case the second-order polarization susceptibilities in
(11.10) to (11.12) have the relation vjik

(2) = vijk
(2) = vkij

(2) = veff
(2); therefore (11.12)

including phase factor can be written as

dE3j zð Þ
dz

¼ �i
2px
n3c

veff E1iE2kexp iDkzð Þ ð11:17Þ
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where Dk = k3−k2−k1. Suppose there is no second harmonic input, that is,
E3j(0) = 0 and the length of crystal is L. Under the small signal approximation, the
efficiency of the double frequency conversion is very low, and the electric field
intensity of the fundamental laser beam can be considered to be independent of
z. Integrating (11.17) in this condition, the laser field at the output end of the crystal
is obtained

E3j Lð Þ ¼ �i
2px
n3c

veff E1iE2k
eiDkL � 1

iDk

Therefore

E3j Lð Þ�� ��2¼ 4p2x2

n23c
2
v2eff E

2
1jE

2
2kL

2 sin
2 DkL=2ð Þ
DkL=2ð Þ2

Attention, in the case of frequency doubling, I2�I(x3) = I(2x), I1�I(x1) =
I(x2) = I(x), while in (11.17) and the above equation, the refractive index n3 is
denoted by n2 and the refractive index at the fundamental wavelength is expressed
as n1, thus the second harmonic conversion efficiency can be obtained

I2
I1

¼ 32 p3x2v2eff L
2 1
c3n2n21

sin2 DkL=2ð Þ
DkL=2ð Þ2 � I1 ð11:18Þ

It can be seen that the second harmonic conversion efficiency is proportional to the
intensity and the frequency square of the fundamental laser, the square of
second-order nonlinear optical coefficient, and the square of crystal length. The
factor sin2(DkL/2)/(DkL/2)2 is determined by a phase matching condition. In the
case of phase matching Dk = 0, this factor reaches its maximum value. When
calculating the second harmonic intensity, the total loss of the fundamental wave is
the sum of (11.13) and (11.14), which is two times that of the (11.13). A is used to
express the product of the following series of parameters

A ¼ 8 px1=cn1ð Þveff 2 p=cn2ð Þ1=2¼ 16 p2m1=cn1
� �

vð2Þeff 2 p=cn2ð Þ1=2

Therefore the coupling equation can be written as

dI1
dz ¼ �AI1

ffiffiffiffi
I2

p � j1 þ c1ð ÞI1
dI2
dz ¼ AI1

ffiffiffiffi
I2

p � j2 þ c2ð ÞI2

(
ð11:19Þ

The prerequisite Dk = k3 − k2 − k1 = 0 for the generation of second harmonic wave
has been taken into account and at the same time, the absorption coefficient j1,j2
and the loss coefficient c1, c2 are added to take into account the absorption of
fundamental and double frequency laser beams and the other losses.
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Different ways to achieve Dk = 0 is by corresponding to different types of phase
matching. One can take the negative uniaxial crystal as an example to explain how
to realize the type I and the type II phase matching. Wave vector k is the momentum
of photon and Dk = 0 is k3 = k2 + k1. The equality on both sides of this vector
equation means the consistency of the momentum in number and direction, so
phase matching is the conservation of momentum in nonlinear optical process. If
this condition is satisfied, the second harmonic generation in fundamental wave
propagation process will strengthen each other and form a stronger second har-
monic laser beam. The wave vector is nx/c in quantity and for the frequency
doubling process, the condition of phase matching k2 = 2k1 is

n2 x2ð Þx2 ¼ 2n1 x1ð Þx1

Substituting x2 = 2x1 then

n 2x1ð Þ ¼ n x1ð Þ ð11:20Þ

In the case of light propagating in a normal dispersion medium, the higher the
frequency, the higher the refractive index, the above conditions cannot be satisfied.
However, when there is birefraction phenomenon in the crystal, the refractive index
of ordinary light (o light) is not equal to that of the extraordinary light (e light). If
the fundamental light is o (or e) light while the second harmonic light is e (or o)
light, then (11.20) can be satisfied. The way to realize the phase matching is to
select a particular direction of the crystal so that (11.20) can be satisfied; it is called
angle phase matching. In some of the nonlinear optical crystals, the temperature
coefficient of the refractive index for ordinary light is different from that of the
extraordinary light and so phase matching can be achieved by changing the tem-
perature; it is called temperature phase matching.

Some specific problems of angle phase matching will be explained as follows.
For a negative uniaxial crystal (no > ne), if one chooses fundamental light as o light
and second harmonic light as e light, the refractive index of high-frequency second
harmonic light can be equal to that of the low-frequency fundamental light. This
matching method is referred to as ooe type matching method. Obviously, for a
positive uniaxial crystal, because ne > no, one can only choose eeo matching
method to satisfy the phase matching condition. It can be seen that, whether it is ooe
or eeo matching method, the polarization directions of two fundamental light are
parallel, so it is called a parallel phase matching or a type-I phase matching. Of
course, one can still choose two fundamental waves as o light and e light,
respectively, and the frequency doubling light in a negative uniaxial crystal as e
light (oee type phase matching) and in an uniaxial positive crystal as o light (oeo
type phase matching). In these two cases the polarization directions of two fun-
damental lights are all perpendicular to each other, so these phase matching are
called orthogonal phase matching or type-II phase matching.

According to the phase matching conditions, the optimal angle of different types
of phase matching can be deduced. The calculation formulas will be simply listed in
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the following. The phase matching angle for type-I phase matching of a negative
uniaxial crystals is

hmð Þ�I ¼ sin�1 ne2
no1

� 	2

� no2
� �2� no1

� �2
no2
� �2� ne2

� �2
" #1=2

ð11:21Þ

The phase matching angle for type-II phase matching of a negative uniaxial crystals
is

hmð Þ�II¼ sin�1
2no2
� �2.

ne1 hmð Þ�II þ no1

 �2 � 1

no2
�
ne2

� �2�1

8<
:

9=
;

1=2

ð11:22Þ

The right side of (11.22) includes the unknown quantity, so one can use iterative
method to work out the phase matching angle. For type-I and type-II phase
matching of a positive uniaxial crystal, the corresponding phase matching angle
formulas can be obtained as follows

hmð ÞþI ¼ sin�1 1� no1
�
no2

� �2
1� no1

�
ne1

� �2
" #1=2

ð11:23Þ

hmð ÞþII ¼ sin�1 no1
�

2no2 � no1
� �
 �2�1

no1
�
ne1

� �2�1

" #1=2
ð11:24Þ

The angle hm in (11.21) to (11.24) is the angle between the wave vector of optical
wave and the optical axis of crystal. It must be noted that when the direction of
wave vector (direction of light power flow) and the direction of the optical axis of a
uniaxial crystal is not equal to 90°, the traveling direction of the fundamental laser
beam and that of the second harmonic laser beam will not completely coincide but
is taken off a small angle d called walk-off angle. For type-I phase matching of a
negative uniaxial crystal, d satisfies the following equation [46]

tand ¼ n01
� �2
2

ne2
� ��2� n02

� ��2
h i

sin 2hmð Þ ð11:25Þ

As the light continues to travel in a crystal, the overlapping between fundamental
laser beam and second harmonic laser beam becomes smaller and the frequency
doubling efficiency decreases, which greatly limits the crystal size that can be used.
It can be seen from (11.25) that d = 0 when hm = 90° and the unfavorable factor
caused by walk-off angle disappears. Usually the phase matching of hm = 90° is
called non-critical phase matching while the phase matching of hm 6¼ 90° is called
critical phase matching. It can be seen from (11.21) that for the type-I phase
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matching of a negative uniaxial crystal, when n1
o = n2

e, hm = 90°. Technically, the
crystals with n1

o close to n2
e and d(n1

o−n2
e)/dT6¼0 is generally chosen to realize

non-critical phase matching by using the method of temperature regulation.
In addition to the above-mentioned laser power, frequency doubling coefficient,

and crystal length, the other factors that affect the efficiency of frequency doubling
should be taken into account. First is the allow angle breadth Dhm; beyond it the
frequency doubling efficiency is less than 50% of its maximum value, and can be
obtained from the formula [46]

Dhm ¼ 0:66k1no1
L no2 � ne2
� �

sin2hm
ð11:26Þ

where k1 is the wavelength of fundamental laser beam and L is the length of crystal.
The frequency doubling efficiency will decrease when the wavelength of funda-
mental laser deviates from the wavelength of phase matching. If the wavelength
deviation is dk and the frequency doubling efficiency reduced to half of its maximum
value, then the laser spectral linewidth Dk = 2dk and Dk can be expressed as [46]

Dk ¼ 0:44k1

L
@no1
@k1

� 1
2
@ne2 hð Þ
@k2

h i ð11:27Þ

Obviously, the smaller the divergence angle, the better the monochromaticity of a
laser beam and the higher the efficiency of second harmonic generation; therefore
one can also use spectral brightness to simultaneously describe the monochro-
maticity, directionality, and the power of a laser beam, that is, the power of laser
beam per unit solid angle and unit wavelength interval. The spectral brightness can
be improved by using a mode selection method of transverse mode and longitudinal
mode. In addition, the change of crystal working temperature will cause the change
of the refractive index of a crystal, which deviates from the phase matching point.
Therefore, depending on the refractive index temperature coefficient of various
crystals, each nonlinear optical crystal has a permissible frequency doubling tem-
perature range DT [46]

DT ¼ 0:44k1
Ld ne2 � no1
� ��

dT
ð11:28Þ

The temperature change which affects the phase matching mainly comes from the
change of environment temperature, but the light absorption of a crystal may also
produce the temperature change. Particularly for a SFD laser crystal, because the
doping of active ion, the total thermal effect or non-uniform thermal effect caused
by the non-uniform absorption of pump light will reduce the efficiency of frequency
doubling. This will be further discussed in the following. Similarly, the optical
inhomogeneity in a crystal will also make parts of the region passing through by the
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laser beam does not satisfy the phase matching condition, thereby reducing the total
conversion efficiency of frequency doubling.

A series of second harmonic laser parameters mentioned above are related to the
refractive indexes of o-light and e-light for fundamental and second harmonic wave,
while these refractive indexes also related to the active ion concentration of a
crystal. The dispersion relations of the refractive index of two typical SFD laser
crystals are listed below.

NYAB: The Nd3+ concentration is 5.6 at%, in the temperature range of
293 K < T < 473 K and wavelength range of 0.4 lm < k < 0.7 lm. The dispersion
relation is (the temperature T is in unit of Kelvin and the wavelength k is in unit of
lm) [19]

n2o ¼ 1þ 172:4727

0:10985þ 7:7� 10�7T � 2:38� 10�9T2ð Þ�2�k�2

n2e ¼ 1þ 161:08069

0:10669þ 1:3� 10�6T � 3:2� 10�9T2ð Þ�2�k�2

Yb3+:YAB: The Yb3+ concentration is 8 at%. The dispersion relation at room
temperature is (the wavelength k is in unit of lm) [47]

n2o ¼ 3:1762þ 0:0013= k2 � 0:1480
� �� 0:0971k2

n2e ¼ 2:8632þ 0:0090= k2 � 0:0937
� �� 0:0083k2

Phase matching angle, walk-off angle, and other parameters can be calculated by
(11.21) to (11.28), while the refractive indexes and phase matching parameters of a
series of nonlinear optical crystals, including the frequency doubling crystal, can
also be found in related manuals and books [48–50].

11.2 Relationship Between Fundamental and Second
Harmonic Waves in SFD Laser Crystal

In principle, the SFD laser can be summed up in one sentence: the stimulated
radiation emitted by the active ions forms a fundamental laser beam in an optical
resonator, then a second harmonic laser beam is generated by the second-order
nonlinear optical effect of the crystal, finally the second harmonic laser beam output
by the output mirror of a laser resonator. However, it cannot be understood as a
simple addition of laser effect and second harmonic effect. On the one hand, the
efficiency of second harmonic conversion is proportional to the intensity of fun-
damental laser, and the increase of the intensity of fundamental laser is undoubtedly
beneficial to the increase of the intensity of second harmonic laser. On the other
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hand, the conversion between fundamental laser and second harmonic lasers is not
only mutually promoted but also restricted to each other. This is owing to the fact:
first, the doping of ions into the host crystal has certain effect on the nonlinear
optical coefficient of the crystal; secondly, a fundamental laser beam transformed
into a second harmonic laser beam will form an important loss of the fundamental
laser oscillation, that is, the generation of second harmonic laser has a restrictive
function on the generation of fundamental laser; thirdly, the second harmonic laser
absorbed by the active ion will weaken the intensity of second harmonic laser;
fourthly, in the Nd3+ ion-doped crystal, second harmonic laser has a pumping effect
on the active ions. The specific details of the above four aspects must be analyzed
separately and then use a model to sum up the four kinds of effect and study the
interaction between them.

First, the effect of the doping of active ion on the second-order nonlinear optical
susceptibility of host crystal should be studied. Taking NYAB crystal as an example,
the Y3+ ion in the crystal is substituted by doping Nd3+ ion. The radius of Nd3+ ion is
slightly larger than that of the Y3+ ion (the Goldschmidt radius of Nd3+ ion is
0.115 nm and that of the Y3+ ion is 0.106 nm). The competition between increase
effect and decrease effect on nonlinear optical susceptibility by the doping of Nd3+

ion determines the optimal concentration of Nd3+ ion. The nonlinear optical sus-
ceptibility of NYAB crystal can be seen as the summation of the nonlinear optical
susceptibility of all the BO3 groups in the crystal, while the nonlinear optical sus-
ceptibility of BO3 group mainly comes from the contribution of p electron in the
group. In NYAB crystal, there is one type of BO3 group (type I group) in which the
O2+ ion (O2+ (1)) only is directly adjacent to Al3+ ion. The other type of BO3 group
(type II group) has two O2+ (O2+ (2)) ions occupying, respectively, the vertices of two
triangular cones in which the Y3+ ion is situated at the center. The p electron dis-
tribution of the BO3 group of type II will be affected by the substitution of Nd

3+ ion.
When Nd3+ ion concentration is low, one Nd3+ ion replaces the Y3+ ion in one of the
triangular cone, then the surrounding environment symmetry of BO3 group is
reduced, and the nonlinear optical susceptibility of this type of group is increased.
The local space symmetry distortion of the crystal in the case of low Nd3+ ion
concentration is less important and has not obvious influence on the summation of
nonlinear optical susceptibility of different BO3 groups in the crystal; therefore, the
overall nonlinear optical susceptibility of the crystal will increase with the increase of
Nd3+ ion concentration. However, when Nd3+ ion concentration increased to a certain
level, the total variation of local space symmetry caused by the Nd3+ doping is
obvious and is detrimental to the summation of nonlinear optical susceptibility of
different BO3 groups in the crystal. At the same time, when Nd3+ ion concentration
increases to reach a certain level, there will be more BO3 groups that have two Y3+

ions substituted by Nd3+ ions and so the number of low environment symmetry BO3

group will be lower than that of the low Nd3+ ion concentration case. Hence, the
number of BO3 group with higher nonlinear optical susceptibility will be decreased
with the increase of Nd3+ ion concentration, at the same time the local space group
symmetry distortion will decrease the summing result of nonlinear optical suscep-
tibility of different BO3 groups. Consequently, when Nd

3+ ion concentration exceeds
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a certain level (optimum concentration), the nonlinear optical susceptibility of
NYAB crystal will be decreased with the increase of Nd3+ ion concentration. The test
of frequency doubling effect of NYAB powder sample with different Nd3+ ion
concentration basically reflects the competition of these two opposite effects.

The nonlinear coupling equations of the SFD process are discussed in detail
below. First, study the term of second harmonic conversion in (11.19). In accor-
dance with the condition of equal gain and loss under steady state, one has

AI1
ffiffiffiffi
I2

p ¼ c2 þ j2ð ÞI2
where j2 is the absorption coefficient of second harmonic laser in crystal, c2 is the
total loss including the output loss, the diffraction loss, and the walk out angle loss
of second harmonic laser, in which the output loss is the main loss. One has the
following expression for the intensity of second harmonic laser.

I2 ¼ A
c2 þ j2

� 	2

I21 ð11:29Þ

Let h = A2/(c2 + j2) then AI1
ffiffiffiffi
I2

p ¼ hI21 . By (11.19), if one ignores the small
fundamental wave absorption and other small loss, the following equation resulted

dI1
dz ¼ �hI21
dI2
dz ¼ hI21 � j2 þ c2ð ÞI2

(
ð11:30Þ

The effect of Nd3+ concentration on the intensity of second harmonic laser beam is
included in the second equation. If the contribution of pumping intensity to fun-
damental laser intensity is taken into account in (11.30), a nonlinear-coupled
equation set can be obtained, which includes the generation of fundamental laser
and the transformation of fundamental laser into second harmonic laser. When the
relationship between parameter A and Nd3+ concentration is obtained, then this
equation can sum up the three aspects of the effects mentioned, which can be used
to study the relation among several laser and nonlinear optics parameters. The
pumping effect of the second harmonic wave is reflected in the inversion of particle
number, which will be taken into account in the rate equation of population
inversion in the next section.

It can be seen from (10.6) of Chap. 10 that the fundamental laser gain coefficient
ag = rem DN, because DN is proportional to the product of the pump absorption rate
ap and the fluorescence lifetimesf of laser level, and so ag/apremsf. Look at the
relation of pump absorption rate with Nd3+ ion concentration. By means of
absorption spectra measurement, the absorption coefficient at wavelength 0.804 lm
when Nd3+ ion concentration is 1%, j0.804 (1%Nd) = 1.44 cm−1 for NYAB crystal
can be obtained, then the pump absorption rate of this crystal is proportional to the
following factor
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ap / 1� e�j0:804 1%ccð ÞN %ð Þtp

The concentration of Nd3+ ion N (%) is in the unit of atomic percentage (it will be
simply expressed as % in the following), and tp is the crystal thickness of pump
light penetration. The relation of the utilization rate of pumping light with Nd3+ ion
concentration can be seen in Fig. 1 in reference [6]: when pumped with LD at
wavelength 0.804 lm, if the crystal length is 0.5 cm, the concentration of Nd3+ ion
is 8%, then the pump light utilization rate can reach 99.7%. It means that on further
increase, the Nd3+ doping concentration has no practical benefit to the improvement
of pump efficiency.

On the other hand, the fluorescence quenching effect of Nd3+ ion in a YAB
crystal is very weak, which belongs to one kind of self-active laser crystal. The
concentration quenching rate KQ of this kind of crystal is proportional to the
concentration of active ion

KQ ¼ CgN ¼ 1
sf
� 1
sr

ð11:31Þ

According to the experimental data of NYAB, the following relation can be
obtained [6]

sf ¼ 3:3� 10�4N %ð Þþ 1:66� 10�2
 ��1
ls ð11:32Þ

Because one has the relation ag/apremsf and emission cross-section rem is
essentially independent of Nd3+ concentration, so that gain coefficient G can be
expressed as

G ¼ Cg � 3:3� 10�4N %ð Þþ 1:66� 10�2
 ��1� 1� e�j0:804 1%ð ÞN %ð Þtp
h i

ð11:33Þ

where Cg is a constant independent of Nd3+ concentration and pump light pene-
tration thickness tp is in the unit of cm. It can be seen from Fig. 11.1 that regardless
of the pump light penetration thickness, tp is 0.3 or 0.5 cm, under the conditions of
Nd3+ concentration <8%, the fundamental laser gain coefficient has been saturated.

Look at the absorption of second harmonic laser. If laser oscillation length is
L (for LD end pumping L = tp), the attenuation factor of second harmonic laser is
obviously exp[−jdNpL], where jd is the absorption coefficient for Nd3+ ion of 1%
concentration at second harmonic wavelength (for NYAB crystal jd = 0.27 cm−1).
The attenuation factor of second harmonic laser by the absorption of Nd3+ ion in
NYAB crystal is shown in Fig. 11.2. It can be seen that the attenuation factor of
15% Nd3+ concentration is four times larger than that of the 4% Nd3+ concentration
for laser crystal with length of 0.5 cm. Although the second harmonic laser light
intensity of powder sample measured for the 15% Nd3+ ion concentration reaches
its maximum, it does not reach two times the corresponding value when the
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concentration is 4%. By (10.20) of Chap. 10, it is known that the power flux of the
fundamental laser can be expressed as

/f ¼
�hxp

csc

n
rpN1sfrem

/in

/th
� 1

� 	
ð11:34Þ

The increase of fundamental laser flux by the increase of Nd3+ ion concentration is
related to the ratio of input power flux to threshold power flux. It can be seen by
(11.34) that when the pump power is constant, the increase of Nd3+ concentration
does not lead to the laser power increase with the same multiple. Even though the
fact that the second harmonic conversion constitutes an important loss of resonant
cavity has not been considered, by taking into account the factors of fundamental
laser power flux and the attenuation caused by the Nd3+ absorption of second
harmonic laser, lower Nd3+ concentrations also should be selected. If the loss of the
fundamental laser by the second harmonic conversion, the inhomogeneous thermal
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Fig. 11.1 Relationship
between the atomic
percentage concentration of
Nd3+ ion and the fundamental
laser gain coefficient of
NYAB crystal: g(Np)
corresponds to the pump light
penetration thickness
tp = 0.3 cm; G(Np)
corresponds to the pump light
penetration thickness
tp = 0.5 cm
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Fig. 11.2 Attenuation factor of second harmonic laser absorption by crystal NYAB; the
horizontal coordinate is Nd3+ atomic percentage concentration Np: a L = 0.5 cm; b L = 1.0 cm
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effect, and the phase mismatch produced by the inhomogeneous of refractive index
in higher Nd3+ ion doping level are considered, one has more reason to choose
lower Nd3+ doping concentration.

Of course, to accurately calculate the optimal Nd3+ concentration, it is necessary
to use the nonlinear optical coupling equation including fundamental laser gener-
ated, the conversion of fundamental laser into second harmonic laser and the
attenuation of second harmonic laser, and so on, which will be introduced in the
next section. Many useful information can be obtained by solving these equations.
Obviously, the optimal doping concentration is a parameter related to pumping
level and the parameters of laser device. Different pumping levels and different
device parameters require different optimal doping concentrations. By the study of
these nonlinear optical coupling equations, one can understand it clearly.

11.3 Nonlinear Optical Coupling Equation of SFD Laser

The simplest nonlinear laser-coupled equation of SFD is that the laser spatial distri-
bution and the influence of walk-off angle are not taken into account [10]. The spatial
distribution of laser pump light can be further included in [51], while the effect of
walk-off angle can be calculated in different ways [52–54]. The theoretical model
described below considers neither the spatial distribution of pump light, fundamental
laser, and output laser nor thewalk-off angle effect. The purpose is to let readers have a
relatively simple and clear understanding of the physical process of SFD. In order to
obtain a result, which can be compared with the experimental data, the above men-
tioned factors should be taken into account; the reader can refer to relevant literature,
especially the theoretical model of Boyd and Kleinman [55]. However, it must be
pointed out that the nonlinear optical coefficient of nonlinear laser crystal depends on
the doping concentration of active ion, and discussion on the optimum doping con-
centration without considering this problem [53, 54] cannot obtain a correct result.

The rate equation set of the fundamental laser operation of a four-level system
independent of spatial distribution is composed of a differential equation of Nd3+

ion population inversion density and a differential equation of fundamental laser
light intensity I1, and it can be written as

dDN
dt

¼ WN1 � WN1ð Þth�
remI1
�hx1

DN

dI1
dt

¼ cremI1
n1

DN � I1
sc

8>><
>>: ð11:35Þ

In the above first equation, the total change rate of particle inversion number is
equal to the increase rate of particle inversion number generated by pump light and
minus the change rate of inversion number necessary to reach the threshold of laser
oscillation and the change rate of inversion particle number produced by laser gen-
eration. Where DN ¼ N2 � g2=g1ð ÞN1;W ¼ gB21dðxÞp is the pumping rate, WN1
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indicates the contribution of the pumping to population inversion density, g is the
efficiency of pumping, and B21 expresses Einstein coefficient in (5.53a) of Chap. 5.
How to express energy density d(x)p as a function of light intensity will be discussed
below. The second term (WN1)th indicates the pumping rate at the laser threshold,
which includes the pumping rate necessary to overcome the losses of spontaneous
emission and fundamental laser light. The first term on the right hand side of the
second equation of (11.35) is the contribution of stimulated radiation to laser
intensity. In general laser rate equation this term should be divided by a factor of
1 + I1/Is, due to the fact that the saturation intensity of the fundamental laser in the
experiments discussed is Is = hc/kremsf � 104 W/cm2, but the intensity of funda-
mental laser light discussed satisfy I1 < < Is, so this factor can be omitted. The
second term is the loss of the fundamental laser intensity in resonant cavity. Where
rem,sc, I1, x1, and n1 are the emission cross-section, the resonant cavity lifetime, the
intensity, the frequency, and the refractive index of fundamental laser, respectively.
In order to write down the rate equation set of fundamental laser generation and its
second harmonic conversion, one should obviously combine equations of (11.30)
and (11.35) in some way. First, one should rewrite (11.30) into time differential form,
namely to use formula dI/dt = dI/dz � dz/dt to transform (11.30), where dz/dt is the
speed of light in the medium, then the following equation set of the fundamental and
second harmonic laser intensities in the case of steady output can be obtained

dI1
dt

¼ � c
n1

hI21

dI2
dt

¼ c
n2

hI21 � j2 þ c2ð Þ c
n2

I2

8>><
>>: ð11:36Þ

In the calculation of population inversion rate, for the total change rate of particle
inversion number, in addition to those expressed in (11.35), the increase rate of
particle inversion number generated by second harmonic wave should be consid-
ered. Combining (11.35) and (11.36) while taking into account that the second
harmonic laser has pumping effect on active ion with pumping rate W2, that is,
W2N1 and the pumping rate of pump source is W0, the following rate equation set
for the fundamental laser of SFD laser crystal can be obtained

dDN
dt

¼ W0 þW2ð ÞN1 � W0N1ð Þth�
remI1
�hx1

DN

dI1
dt

¼ c
n1

remDNI1 � I1
sc

� h
c
n1

I21

8>><
>>: ð11:37Þ

Note, here DN is the population inversion density between the upper and the lower
laser levels. Because the lower laser level is not ground state, the particle number
density is very low, and it can be ignored, the particle number density of upper laser
level is approximately equal to the population inversion density between the upper
and the lower laser levels. N1 is the particle density of ground state, that is, the active
ion density of the crystal. Under the steady-state one has the following equation set

360 11 Nonlinear Optical Properties of Laser Crystals …



W0 þW2ð ÞN1 � W0N1ð Þth�
remI1
�hx1

DN ¼ 0

remDNI1 � n1
csc

I1 � hI21 ¼ 0

8><
>: ð11:38Þ

W2N1, which involves the variable I2, can be neglected in solving the first-order
approximate solution. The following equation can be obtained by the first equation
of (11.38)

remDNI1 ¼ W0N1 � W0N1ð Þth

 �

�hx1

A quadratic equation of I1 with the following solution can be obtained

I1 ¼
� n1

csc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1
csc

 �2
þ 4h W0N1 � W0N1ð Þth


 �
�hx1

r
2h

ð11:39Þ

Because the light intensity must be positive, the negative solution has been given up.
The problem of how to use the second equation set of (11.36) to calculate SFD

laser intensity will be discussed in the following. Pump energy density d(xp) can be
expressed as

d xp
� � ¼ I xp

� �
c
�
np

� � ð11:40Þ

In the problem discussed, the particle number of the upper laser level is much
smaller than that of the ground state. The approximate assumption in Chap. 5 for
the derivation of (5.11a) is valid. By using equations of (5.11a) and (5.53b), it is
obvious that

B12g xð Þ ¼ cj xð Þ
�hxnN1

ð11:41Þ

For the pumping laser with narrow linewidth, one has I(xp) = I0d(x−xp), then the
contribution of pumping laser to the variation rate of the particle number of the
upper laser level can be obtained

W0N1 ¼ gN1

Z
B12g xð Þd xp

� �
dx ¼ g

Z
c

�hxnp

I0d x� xp
� �
c
�
np

� � j xp
� �

dx ¼ gjp
�hxp

I0

ð11:42Þ

where jp � j(xp) and g is the pumping efficiency. For a certain volume of laser
crystal, the intensity of pump light in different position is not the same, for example
for diode laser end pumping, the pumping intensity is strongest on the incident
surface of pumping light, deep into the interior of the crystal the pumping intensity
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is exponential decay. The average pumping rate per unit volume should be an
integral divided by the volume of the pumping region in the crystal. When the
length of a crystal is L, assuming that the intensity distribution of pump laser on the
cross section of the crystal is uniform then the average pumping rate per unit
volume is

R
W0N1dv
V

¼
g
RL
0
jpI0e�jpldl

�hxpL
¼ 1� e�jpLð Þ

�hxpL
gI0 ð11:43Þ

The pump band is very close to the upper laser level, then the probability of
non-radiative transition from pump band to the upper laser level is much higher
than those of the radiative or non-radiative transitions from pump band to other
lower energy levels and so g � 1 can be assumed. Similarly, the pumping effect of
the double frequency laser on the crystal can be written as

W2N1 ¼ j2
�hx2

I2 ð11:44Þ

The pump rate of pump source at the threshold can be expressed as follows

W0N1ð Þth¼
jpIth
�hxp

ð11:45Þ

where Ith is the threshold pump intensity, that is, the threshold pump power per unit
area. It is also the threshold power flux discussed in Chap. 10 and can be expressed
as

Ith � /th ¼
�hxp

csc

np
rpN1sfrem

ð11:46Þ

where rp is the absorption cross-section of the crystal at pump light wavelength and
rem is the emission cross-section of the crystal at fundamental laser wavelength,
therefore

W0N1ð Þth¼
np

cscsfrem
ð11:47Þ

If laser output mirror has reflectivity R at pump light wavelength, then the
corresponding pumping contribution of the reflected light should be added. By
using the second equation of (11.39) and (11.29), as well as (11.47), the first-order
approximate solution of SFD laser intensity can be obtained
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I 1ð Þ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2csc
ffiffiffi
h

p
� 	2
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L
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� np�hx1
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� 	s
� n1
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ffiffiffi
h
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" #

N1r2 þ c2ð Þ

2

ð11:48Þ

The second-order approximate solution of SFD laser intensity is obtained by adding
the pumping effect of the SFD laser obtained in the first-order approximation.

I 2ð Þ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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h

p
� 	2

þ 1� e�jpLð Þ 1þRe�jpLð Þ
L

� I0x1

x0
� np�hx1

cscsfrem
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þ 0:5N1r2I

1ð Þ
2

s
� n1
2csc

ffiffiffi
h

p
" #
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ð11:49Þ

After n−1 iterations, the following is obtained

I nð Þ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2csc
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h

p
� 	2

þ 1� e�jpLð Þ 1þRe�jpLð Þ
L

� I0x1

x0
� np�hx1

cscsfrem

� 	
þ 0:5Nr2I

n�1ð Þ
2

s
� n1
2csc

ffiffiffi
h

p
" #

N1r2þ c2ð Þ

2

ð11:50Þ

According to (11.39) and (11.44), W2N1 � �hx1 ¼ N1r2I2 � �hx1=�hx2 ¼ 0:5N1r2I2
representing the pumping effect of second harmonic laser has been added to (11.48)
to (11.50). After several iterations, the convergence of double frequency laser
intensity can be obtained. The intensity of output SFD laser is equal to the above
laser intensity multiplied by the transmission of output mirror.

As mentioned in the previous section, the doping of a small amount of Nd3+ ion
increases the nonlinear coefficient of NYAB crystal. According to the experimental
data in terms of nonlinear optical coefficient measurement of a series of crystal
powder samples, it can be assumed in the simulation calculation that
veff
(2)(Np) = 6.1207 � 10−9�(1 + Np/30−Np

2/900)esu, as is shown in Fig. 11.3.
For NYAB crystal, the refractive index n1 = 1.755, n2 = 1.708 and in the case
x1 = 1.77 � 1015 s−1, x2 = 3.54 � 1015 s−1, for type I (ooe) phase matching, an
expression of A = 5.73 � 10−8 � (1 + Np/30−Np

2/900) can be obtained by the
formula shown before the introduction of (11.19), where the Nd3+ concentration Np

is in the unit of atomic percentage while the product of active ion number N1 per
unit volume and absorption cross-section rp can be replaced by the product of Np

and the absorption coefficient jp(1%) of Nd3+ ion at unit atomic percentage con-
centration, as shown in Sect. 11.2. jp = N1rp � Npjp(1%) and j2 = N1r2 �
Npj2(1%). According to the data given, for the semiconductor laser pumping at
wavelength 0.804 lm, j0.804(1%) = 1.44 cm−1 and j2(1%) = 0.27 cm−1, so that
jp = 1.44Np (cm

−1) and j2 = 0.27Np (cm
−1).
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Suppose the surfaces of a NYAB crystal with length L = 0.5 cm has 100%
transmittance for the pump light, while the rear mirror and output mirror of the
resonator with length Lc have reflectivity 85 and 15%, respectively, at the wave-
length of second harmonic laser, the cavity loss coefficient per centimeter is
c2 = −ln (0.15� 0.85)/2Lc�(Lc/L) = 1.03/2L. By including other losses, c2 = 1.25/L
can be assumed, therefore

h ¼ A2

j2 þ c2
¼

5:73� 10�8 � 1þNp=30� N2
p=900

 �h i2
0:27Np þ 1:25=L

If the crystal is placed in a resonant cavity consisting of a rear mirror M1 and an
output mirror M2, the cavity length is Lc = 50 mm. The reflectivities of the rear
mirror and the output mirror are all 99.75% at the wavelength of fundamental laser
and the reflectivity of output mirror at the wavelength of pumping light is 70%. The
single pass loss of the fundamental wave in the cavity mirrors is very low. By
taking into account the other loss, it can be assumed that a round-trip loss in the
cavity is 2%, that is, cc = 0.02, then the photon lifetime in the cavity can be
calculated bysc = 2[Lc + (n1−1) L]/(ccc).

In the calculation of SHG intensity of NYAB crystal, according to (11.48) to
(11.50), the parameters are: fluorescence lifetime sf = (3.3 � 10−4 � Np + 1.66 �
10−2)−1 ls [6], emission cross-section at the wavelength of fundamental laser
rem = 4.5 � 10−19 cm2 [12], and the refractive index at pumping wavelength
n0 = 1.77. If the length of the NYAB crystal is 0.5 cm, the power of the pump laser
is 400 mW and pumping light after focusing is a cylindrical beam with diameter
100 nm. In this case the curve of SFD efficiency for different Nd3+ concentration
obtained is shown in Fig. 11.4.

The maximum efficiency of the SFD conversion of NYAB crystal published by
Japanese authors [12] was 17.5%, which is much lower than 29% shown in
Fig. 11.4. This is understandable, because the above calculation does not consider
the walk-off angle effect and the fact that the diameter of pump light cannot
maintain 100 nm in the whole crystal.
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1.1
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χ(2)
eff(Νp)

Np

Fig. 11.3 The relationship
between nonlinear optical
coefficient veff

(2)(Np) and Nd3+

atomic percentage
concentration Np
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Thus, even if one takes into account of the factor that the nonlinear optical
coefficient is increased with the increase of Nd3+ concentration, the optimum
concentration of Nd3+ ion is still in the range of 2–4%. Further calculations show
that the optimal Nd3+ concentration does not change with the pump power, but is
related to the length of the crystal, higher Nd3+ concentration is more suitable for
shorter crystals. The intensity of thermal effect by the increase of Nd3+ concen-
tration and the effect of phase mismatch produced by the inhomogeneous of
refractive index on the conversion efficiency have not been taken into account in
this calculation . Considering the effect of phase mismatch, the lower Nd3+ con-
centration is appropriate. It also can be seen by the calculation that with the increase
of pump power, the efficiency of frequency doubling will be increased. For the 1 W
power pumping (other conditions unchanged), if the above various influence effects
do not calculate, the maximum theoretical efficiency up to 33.4% can be obtained.

It can be seen by this calculation that the loss of fundamental wave (mainly the loss
of mirror) in the laser cavity has a great effect on the output of SFD laser. The above
calculation result is obtained in the case of cc = 0.02. If cc = 0.04 is adopted then
pumped by the same power the maximum theoretical conversion efficiency is only
26.4%. With the increase of crystal length, in order to obtain a best SFD efficiency,
the lower Nd3+ concentration should be adopted. On the other hand, taking into
account the effect of walk-off angle on the efficiency of second harmonic generation
and with the increase of crystal length, to assume the beam width of pump laser
remains 100 nm in the whole crystal the error will be bigger, and it can be seen that
selecting the Nd3+ concentration of 4% and the crystal length of 0.3 cm are more
appropriate. After calculating the effects of the spatial distribution of the pumping,
fundamental and second harmonic laser beams, as well as the walk-off angle, the
results in good agreement with the experimental observation values can be obtained.
This information can be obtained by referring to the literatures [54–57].

Fig. 11.4 Relation of SFD
efficiency with atomic
percentage concentration Np

of Nd3+ ion
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11.4 Self Sum-Frequency Mixing Effect in Nonlinear
Laser Crystal

Blue laser is an important light source in the field of optical information storage,
lithography, laser printing, underwater laser communication, laser display, and laser
medical treatment. By using the self sum-frequency mixing (SSFM) effect of
nonlinear laser crystal to generate blue laser has the advantages of integration, easy
adjustment, and high beam quality. The NYAB and Nd3+:GdCOB crystals first
achieve the blue laser output by this kind of SSFM effect.

The principle of SSFM laser generation will be described below. A simple rate
equation model is introduced first, which does not consider the spatial distribution
of laser beam and the effect of walk-off angle. The aim is to let the reader have a
simple and clear understanding of the physical process of SSFM.

In the problem to be studied the pump beam besides acting as an excitation
source of the fundamental laser (frequencyx1) will also mix with the fundamental
laser by SSFM effect to produce a laser beam of frequency x2 = x1 + xp, here, xp

is the frequency of pump beam. The corresponding wave vectors satisfy the phase
matching relation k2 = k1 + kp. Referring to Sect. 11.1, nonlinear optical coupling
equations can be written as

dI xp
� �
dz

¼ � 4pxp

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

cnpn1n2

s
v 2ð Þ
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I xp
� �

I x1ð ÞI x2ð Þ
q

exp �i k2 � k1 � kp
� �

z

 �

ð11:51Þ

dI x1ð Þ
dz

¼ � 4px1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

cnpn1n2

s
v 2ð Þ
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I xp
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I x1ð ÞI x2ð Þ
q
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 �

ð11:52Þ

dI x2ð Þ
dz

¼ þ 4px2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

cnpn1n2

s
v 2ð Þ
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q

exp i k2 � k1 � kp
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 �

ð11:53Þ

By using a symbol B to represent 4p(2p/cnpn1n2)
1/2veff

(2) and let I1 � I(x1),
I2 � I(x2). Because I0 is used to denote the pump beam intensity on the incident
face, Ip � I(xp) will be used to represent the pump beam intensity in the crystal
(which has a relation with the incident laser intensity I0 illustrated in the following),
then the rate equations satisfying the phase matching condition can be written as

dIp
dz

¼ �xp

c
B

ffiffiffiffiffiffiffiffiffiffiffi
IpI1I2

p ð11:54Þ
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dI1
dz

¼ �x1

c
B

ffiffiffiffiffiffiffiffiffiffiffi
IpI1I2

p ð11:55Þ

dI2
dz

¼ þ x2

c
B

ffiffiffiffiffiffiffiffiffiffiffi
IpI1I2

p ð11:56Þ

In steady state, the loss per unit crystal length caused by the generation of second
harmonic laser is equal to the gain expressed by (11.56), therefore

c2I2 ¼ x2=cð Þ � B� IpI1I2

 �1=2 ð11:57Þ

I2 ¼ x2B
cc2

� 	2

IpI1 ð11:58Þ

The above rate equations become

dIp
dz

¼ �xpx2B2

c2c2
IpI1 ð11:59Þ

dI1
dz

¼ �x1x2B2

c2c2
IpI1 ð11:60Þ

dI2
dz

¼ þ x2
2B

2

c2c2
IpI1 ð11:61Þ

By (11.59) it can be seen that in addition to the original absorption loss jp of the
crystal, pump beam also subjected to a loss j resulted from frequency mixing
conversion. Taking the incident point of pump beam as zero, the pump beam
intensity at the position z can be expressed as

Ip ¼ I0e
� jp þjð Þz ð11:62Þ

where j ¼ xpx2

c2c2
B2I1. Combining the laser rate equations for a four-level system in

steady state, the nonlinear optical coupling equations can be written. The corre-
sponding equation of (11.38) for the fundamental laser is

W0N1 � W0N1ð Þth�
remI1
�hx1

DN ¼ 0

c
n1

rDNI1 � 1
sc
I1 � x1x2

cc2n1
B2IpI1 ¼ 0

8>><
>>: ð11:63Þ

Intensity I1 can be obtained by the above equation after averaging the pump beam
intensity of (11.62) by the same way as (11.43) and taking into account the effect of
output mirror reflectivity R on the pump beam; at the same time, the expressions of
W0N1 and (W0N1)th take the similar forms of (11.42) and (11.47), respectively.
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The fundamental laser intensity I1 by multiple trips in the cavity will arrive at the
following steady value

I1 ¼
c W0N1 � W0N1ð Þth

 �

�hx1

n1
sc

þ
x1x2B2I0 1� e� jp þ jð ÞLh i

cc2 jp þ j
� �

L

¼
c 1� e� jp þjð ÞLh i

1þRe� jp þ jð ÞLh i
� I0x1jp=xp � np�hx1

scsfrem

� �

Ln1
sc

þ
x1x2B2I0 1� e� jp þ jð ÞLh i

cc2 jp þ j
� �

ð11:64Þ

The fundamental laser intensity I1 should be solved by iterative method. By
assuming j = 0 in (11.64) to calculate the first-order approximation of I1, and then
using this first-order approximation of I1 to calculate the second-order approxi-
mation of I1, after several iterations, the results of I1 and j can be obtained. By the
integral of equation (11.61), the intensity of the frequency mixing light inside the
cavity can be obtained

I2 ¼ x2B

cc1=22

 !2I0 1� e� jp þjð ÞLh i
jp þ j
� �

c 1� e� jp þjð ÞLh i
1þRe� jp þ jð ÞLh i

� I0x1jp=xp � np�hx1

scsfrem

� �

Ln1
sc

þ
x1x2B2I0 1� e� jp þ jð ÞLh i

cc2 jp þ j
� �

ð11:65Þ

According to the above formula, the relationship between the efficiency of SSFM
and Nd3+ concentration can be estimated.

Assuming that the intensity of SSFM laser output is TI2 = 0.85I2 and
g ¼ 0:85I2=I0, the photon cavity lifetime sc of the fundamental laser can be cal-
culated by the value in Sect. 11.3 and the loss coefficient is estimated to be
c2 = 1.5/L. When pump power and crystal length is 500 mW and 0.5 cm,
respectively, and the reflectivity of output mirror at pump wavelength is R = 0.7,
according to the above formula the calculated efficiency of blue laser is shown in
Fig. 11.5. Obviously, this efficiency is much lower than that of the SFD green laser

Fig. 11.5 Relation between
efficiency of SSFM and Nd3+

atomic percentage
concentration Np
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in the same condition. One of the important reasons is: as a component of SSFM
process, the loss of the pumping light is very high.

The above calculation also ignores the two influence factors, that is, the effect of
walk-off angle and pump beam is impossible to be focused into a very fine beam in
the whole length of the crystal. Taking into account these factors, the efficiency of
SSFM will be much lower. Mougel et al. [22] used GCOB crystals to obtain SSFM
laser beam. The efficiency was only 0.2%. Although the above calculation shows
that the SSFM efficiency will increase with the increase of crystal length, it is not
good to use a longer crystal after considering the effect of walk-off angle and other
loss factors. In addition, higher SSFM efficiency can be achieved only when the
Nd3+ ion concentration is about 1%.

Considering the real space distribution of all the light beams and the effect of
walk-off angle, a result near to the experimental observation value can be obtained.
The following is a brief introduction of how to use the expression published by
Boyd and Kleinman [55] and correct their formula of efficiency-decreasing factor to
calculate the laser output power of SSFM, and discuss the relationship of SSFM
efficiency with crystal length and Nd3+ ion concentration [56] (symbols of physical
quantity used are the same as reference [56]).

In the case discussed, a nonlinear laser crystal with length L is placed as close as
possible to the input mirror in a plano-concave resonator with reflectances R1 and
R2 at fundamental wavelength for the input and output mirrors, respectively. The
light is propagated along the crystal length direction z. The pump beam is focused at
the entrance face of the crystal. With this design a maximum mode overlap among
the pump, the fundamental and the SSFM lasers inside the cavity can be obtained
within crystal length L. The pump beam is a focused Gaussian beam of TEM00

mode and the fundamental and the SSFM lasers are also Gaussian beams. The beam
waists of pump beam and fundamental laser are wp0 and wc0, respectively. The spot
sizes are assumed to propagate according to the following expression

w2
p zð Þ ¼ w2

p0 1þ k21z
2

p2w4
p0n

2
1

 !
ð11:66Þ

w2
c zð Þ ¼ w2

c0 1þ k22z
2

p2w4
c0n

2
2

� 	
ð11:67Þ

where k1 andk2 are the wavelengths of the pump beam and fundamental laser,
respectively, and n1 and n2 are the corresponding refractive indexes. Let the
intensity of the pump, the fundamental, and the SSFM lasers vary with coordinate
z and radial coordinate r according to the following expression

I r; zð Þ ¼ P zð Þf r; zð Þ ð11:68Þ

f r; zð Þ ¼ 2
pw2 zð Þ exp �2r2=w2 zð Þ� � ð11:69Þ
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where P(z) is the power of the wave as a function of z and f(r, z) is the normalized
beam profile for the TEM00 mode. The pump power Pp(z) as a function can be
expressed as

P zð Þ ¼ Pp0 exp �apz
� � ð11:70Þ

In the above expression Pp0 is the pump power incident upon the crystal, ap is
the absorption coefficient at the pump wavelength. The rate equation of the fun-
damental laser is

dIc
dt

¼ g0 r; zð Þ
1þ 2Ic=Is

� ac

� 	
Ic ð11:71Þ

where ac is the distributed loss per unit length in the crystal and Is denotes the
saturation intensity of fundamental laser, Is ¼ hc=k2resf , the small signal gain
coefficient with spatial distribution g0(r,z) is expressed as

g0 r; zð Þ ¼ 2resf apk1Pp0

phcw2
p zð Þ exp �apz� 2r2=w2

p zð Þ
 �

ð11:72Þ

where re, sf, are the emission cross-section of fundamental wave and the lifetime of
upper laser level, respectively. After calculation, the circulating fundamental power
Pc in the cavity can be expressed as

Pc ¼ p�w2
cIs

4q
2G

2dL� lnRþ 2KPp0
Pp0 � 1

� 	
ð11:73Þ

where d is the internal loss of the crystal, which originates from the crystal defect,
scattering, diffraction, and so on. K is defined by the following expression

K ¼ 2x2
0v

2
eff

pe0c3n20n3
Lk0 exp �apL=2

� �� 1� f2
� �

1� c2ð Þ
1þ cf

" #
h0 r; b; j; n; lð Þ

where parameters c, f and efficiency-decreasing factor h′(r, b, j, n, l) can be found
in (11.80) and (11.81). Taking into account the reflection factors that are due to the
absence of antireflection coatings on the surfaces of the crystal, the effective
reflectance of the two cavity mirrors with reflectances R1 and R2 is R =
[r1/2 + (R1R2)

1/2]2[1 + (rR1R2)
1/2]−2(r = (n2 − 1)2/(n2 + 1)2), and the factors G and

q were expressed as
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G ¼ 2resf k1 1� exp �apL
� �
 �

phc �w2
p þ �w2

c

 � ð11:74Þ

q ¼ 1� 0:92
�w2
p

�w2
p þ �w2

c
ð11:75Þ

where �w2
p and �w2

c are the mean beam spot size for the pump and fundamental lasers

�w2 ¼

RL
0
w2 zð Þdz
L

ð11:76Þ

The next is to introduce the expression of P3, the power of the frequency mixing
laser in resonant cavity, by a heuristic approach of Boyd and Kleinman [55]

P3 ¼
2x2

0v
2
eff Pp0Pc

pe0c3n20n3
Lk0 exp �a0Lð Þ � 1� f2

� �
1� c2ð Þ

1þ cf

" #
h r; b; j; n; lð Þ ð11:77Þ

where the parameters r, b, j, n, and l represent phase mismatch, double refraction,
absorption, strength of focusing, and focal position, respectively. The subscripts 1,
2, 3 of the physical quantities correspond to the pumping wave, the fundamental
wave, and the frequency mixing wave. Here the parameters c, f, x0, and n0 is
introduced to let x1 = x0(1 − c), x2 = x0(1 + c), n1 = n0(1 − f), and n2 =
n0(1 + f), where c = (x2 − x1)/(x2 + x1) and f = (n2 − n1)/(n2 + n1). The phase
matching condition n3x3 = n1x1 + n2x2 must be satisfied, so that n3 = n0(1 + cf)
and k0 = (k1 + k2)/2. The efficiency-decreasing factor h(r,b,j,n,l) introduced by
Boyd and Kleinman is

h r; b; j; n; lð Þ ¼ exp la0Lð Þ
4n

Z Zn 1þ lð Þ

�n 1�lð Þ

dsds0 �
exp �j sþ s0ð Þ þ ir s� s0ð Þ � b2 s� s0ð Þ2
h i

1þ isð Þ 1� is0ð Þ

ð11:78Þ

The above formula is applicable to the case of the source beams with the same
confocal parameters (such as the case of frequency doubling). In this case the
confocal parameters are b = k(w0)

2, r = bDk/2 (Dk is the phase mismatch), n = L/b,
l = (L − 2f)/L (f is the focal position of the pump beam in the crystal, when pump
beam is focused on the input surface f = 0, l = 1), j = ab/2, a = (a1 + a2 − a3)/2,
a′ = (a1 + a2 + a3)/2, b = qk1w01/2 (q is the walk-off angle of the frequency
mixing beam generated by the birefringence of crystal).

In the case of SFM with arbitrary confocal parameters (or beam waists) of pump
and fundamental laser beams, the expression of efficiency-decreasing factor must be
extended to the case of source beam with arbitrary waist (w10, w20) or confocal
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parameters b1 = k1(w01)
2 and b2 = k2(w02)

2. Introducing a so-called fictitious beam
and let its wave vector k0, confocal parameter b0, and beam waist w0 satisfy the
following expression

k0 ¼ k1 þ k2ð Þ=2; b0 ¼ k1b1 þ k2b2ð Þ=2;w2
0 ¼ 2 k21w

2
10 þ k22w

2
20

� �
= k1 þ k2ð Þ2

ð11:79Þ

The frequency and refractive index of the fictitious beam are defined as

x0 ¼ x1=ð1� cÞ ¼ x2=ð1þ cÞ; n0 ¼ n1=ð1� fÞ ¼ n2=ð1þ fÞ ð11:80Þ

Introducing b1 = b1/b0 and b2 = b2/b0 then the efficiency-decreasing factor h′(r, b,
j, n, l) can be expressed as

h0 r;b; j; n;lð Þ ¼ exp laLð Þ
4nb1b2

Z Zn 1þ lð Þ

�n 1�lð Þ

dsds0 �
1þ isð Þ 1� is0ð Þ exp �j sþ s0ð Þ þ ir s� s0ð Þ � b2 s� s0ð Þ2

h i
1þ is=b1ð Þ 1� is0=b1ð Þ 1þ is=b2ð Þ 1� is0=b2ð Þ

ð11:81Þ

When the two beams with the same confocal parameter are involved in the
mixing, then b1 = b2, so that b1 = b2 = 1. Obviously (11.81) is the same as (11.78),
that is, (11.78) is the expression of (11.81) in the special case.

If the efficiency-decreasing factor h(r,b,j,n,l) is replaced by h′(r,b,j,n,l) and
consider that the output mirror has a transmittance T at the frequency mixing
wavelength, the absorption coefficients of the crystal on the fundamental and fre-
quency mixing beams can be neglected, then a = a′ = ap/2; therefore the output
power of frequency mixing wave will be

Ps ¼ P3T

¼ Pp0PcT � 2w2
0v

2
eff

pe0c3n20n3
Lk0 exp �apL=2

� �� 1� f2
� �

1� c2ð Þ
1þ cf

" #
h0 r; b; j; n; lð Þ

ð11:82Þ

It can be seen from (11.73) to (11.82) that the laser power output of the SSFM is
a complicate function of crystal length, doping ion concentration, pump beam
waist, fundamental cavity mode size, walk-off angle, phase mismatch, effective
nonlinear coefficient, pump beam absorption coefficient, pump power, and internal
loss. The relationship of the output power (efficiency) of NYAB crystal with several
parameters is shown in Figs. 11.6, 11.7, 11.8.
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Fig. 11.6 Typical curves of the self-frequency mixing laser output of NYAB crystal as functions
of a Nd3+ concentration for different crystal lengths; b crystal length for different Nd3+

concentrations [56]

Fig. 11.7 Dependences of the
self-frequency mixing laser
output on the walk-off angle.
Dotted curves, output at the
walk-off angle of q = 2.4° for
NYAB crystal [56]

Fig. 11.8 Self-frequency mixing laser output of NYAB crystal as functions of a different pump
beam waists in simulating a Ti sapphire pump and b at a fixed pump waist wp0 = 60 lm in
simulating a LD pump, N = 5.5 at% and L = 1.7 mm for the NYAB crystal. The absorbed pump
power is 200 m [56]
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As mentioned in Chap. 10, the thermal load of the fundamental laser operation of
current Nd3+ ion-doped laser crystals can be reduced by pumping directly into the
upper laser level 4F3/2. This method can also be used in the operation of SFD and
SSFM; the problem of small pumping absorption coefficient can be solved by
appropriate increase in the active ion concentration to maintain sufficiently high
absorption efficiency. Especially for the SSFM, according to the above calculation,
it can be seen that direct pumping to the upper laser level, being another component
in the mixing process, the pump laser beam can have higher intensity, although
owing to the weaker 4I9/2 ! 4F3/2 absorption, the fundamental laser intensity may
be lower for certain concentration of activate ion. By appropriate choice of the
active ion concentration, the new pumping method can still achieve high enough
conversion efficiency. On the other hand, by using direct pumping method the
thermal load is smaller and the temperature rise of the crystal will be lower and so
bring about the improvement of the actual output efficiency. Figure 11.9 is a
comparison of the theoretical results of SFD output power of NYAB crystal for the
direct pumping and the indirect pumping.

11.5 Stimulated Raman Scattering Effect of Laser Crystal

The laser crystal with strong enough third-order nonlinear optical effect is possible
to transform a fundamental laser beam into a series of Raman laser emission lines at
different wavelengths by stimulated Raman scattering (SRS) effect and have been
realized in Nd3+:KGW [57] and Nd3+:Gd2(MoO4)3 [58] crystals. SRS process has
no phase matching requirement as those in the second-order nonlinear optical

Fig. 11.9 Output power of SFD of NYAB crystal versus Nd3+ concentration for the different
crystal length under direct and indirect pumping [54]
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processes of frequency doubling, mixing, or optical parametric oscillation; thereby
has no instability caused by temperature, angle, and wavelength variations, which
shows that it has advantages in producing a series of special laser wavelength. The
main properties of this effect and its relationship with crystal structure character-
istics will be briefly introduced in this section.

It is well known that Raman scattering is a non-elastic interaction between light
and optical lattice vibration (or photon and optical phonon). Photon can emit one or
several phonons (Stokes scattering) or absorb one or several phonons (anti-Stokes
scattering) in Raman scattering. Raman scattering cross-section is usually calcu-
lated by perturbation theory of quantum mechanics while the semi-classical theory
is used to discuss some features of this effect.

The dipole moment of a medium can be expressed as l = lI + lP, where lI is
the dipole moment induced by external electric field and lP is its intrinsic dipole
moment. These two kinds of polarization can be changed by lattice vibration. lI is
generally expressed as lI = aE (for simplicity the scalar form is written). The lattice
vibration will cause the variation of induced polarization of a medium and it can be
expanded with respect to vibration coordinate u in first-order approximation as

a ¼ a0 þð@a=@uÞ0uþ . . .

On the other hand, the intrinsic dipole moment of the medium can also be
changed by the lattice vibration, which can be expanded respect to coordinates u in
the same approximation as

lp ¼ l0p þ @lp=@u
� �

0
u

so that

l ¼ l0p þ aE ¼ l0p þ a0Eþ @lp=@u
� �

0
uþ @a=@uð Þ0uE

It is well known that the energy operator of dipole moment interacting with the
electric field E of external radiation field is

Hi ¼ �l � E

Using the scalar form, it can be directly written as

Hi ¼ �l0pE � a0E2 � @lP=@uð Þ0uE � ð@a=@uÞ0uE2 ð11:83Þ

The third and fourth terms of the above equation are the interaction energy of lattice
vibration with external electric field. Written in operator form, the electric field E of
the photon can be expressed as (4.5b) in Chap. 4, that is a linear combination of
photon creation and annihilation operators and can be simply expressed as

E ¼
X
ka

c1 kað Þaka þ c2 kað Þaþ
ka


 � ð11:84Þ
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On the other hand, the displacement u of lattice vibration can also be expressed as a
formula in Chap. 6 in the form of linear combination of phonon creation and
annihilation operators written as

u ¼
X
qj

c1 qjð Þbqj þ c2 qjð Þbþ
qj

h i
ð11:85Þ

The letters k and q are used to represent the wave vector of a photon and a phonon,
respectively. The transition matrix element of the interaction of photon with phonon
is i Hij jfh i. Only the third and the fourth terms of (11.83) are involved in the change
of photon and phonon states. The third term involves the

matrix element i c1ðkaÞc2ðqjÞakabþ
qj

��� ���fD E
corresponding to absorb a photon and

emit a phonon. The phonon frequency is in the infrared range, so it is called
infrared absorption. The fourth term involves matrix element

i c1ðkaÞc2 k0a0ð Þc2ðqjÞakaaþ
k0ab

þ
qj

��� ���fD E
corresponding to absorb a photon of mode ka

(frequencyxk) and emit a photon of mode k′a′ (frequency x′k′) at the same time
emit a phonon of mode qj (frequencyxq), where xk > x′k′. It is Stokes Raman
scattering. Equation (11.83) also includes another form of matrix elements, that is

i c1ðkaÞc2 k0a0ð Þc1ðqjÞaþ
ka
ak0abqj

��� ���fD E
corresponding to absorb a photon of mode k′a′

(frequencyx′k′), emit a photon of mode ka (frequency xk), and at the same time
absorb a phonon of mode qj (frequencyxq); it is the inverse process of Stokes
scattering and is called anti-Stokes scattering. Referring to (4.2), the calculation of
the matrix element of photon creation and annihilation operator shows that the
probability of positive process is proportional to [p(xk′) + 1]p(xk)(∂a/∂u)0

2 while
the probability of inverse process is proportional to [p(xk) + 1]p(xk′)(∂a/∂u)0

2,
where p(xk) and p(xk′) are the photon numbers of incident light and scatter light,
respectively. In the general Raman scattering process, because of p(xk′) < < p(xk),
the probability of the inverse process is much lower than that of the positive
process. In this spontaneous Raman scattering process the medium has no ampli-
fication effect on the scattering light of frequency xk′. It can be shown [59] that the
third-order nonlinear optical coefficient of a medium is the negative imaginary part
of the refraction index of Raman scattered light. When the medium has a larger v3,
it will have a sufficiently large amplification effect on the Raman scattering light;
therefore under a strong pumping, the gain of the Raman scattering light is enough
to overcome its loss and can generate a stimulated Raman emission.

The important difference of the SRS with the spontaneous Raman scattering is the
scattering light of SRS is a coherent light and the intensity of scattered light increases
exponentially with its distance through amedium. In addition, because the gain factor
of stimulated scattering is proportional to the incident light intensity in the unit solid
angle, if the gain medium is placed inside a cavity it has the so-called “cleanup effect”
which makes the light beam quality of the scattering light better than that of the
incident light. Therefore, the poor pump light quality can be converted to Gaussian
laser beam output of the Raman laser. A detail discussion on these important nonlinear
optical effects can be referred to the literatures [60] and [61].
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Raman lasers utilize the SRS effect of the materials to shift the laser frequency to
a series of Stokes and anti-Stokes laser lines. In order to make the Raman laser have
a higher efficiency, it is necessary to have a higher total Raman gain G. It can be
proved that the light intensity Is(l) of the first Stokes Raman scattering has the
following relation with the length l of the Raman medium the light passed

IsðlÞ ¼ Isð0Þ exp gRIpl
� � ð11:86Þ

where Ip is the pump intensity and gR is the Raman gain coefficient. The total
Raman gain G of the medium obviously is

G ¼ gRIl ð11:87Þ

Raman gain coefficient gR can also be expressed as

gR / qnð@r=@XÞ=m3sDms ð11:88Þ

In the above expression qn is the phonon density, (∂r/∂X) is called the differ-
ential scattering cross-section of Raman scattering (from previous derivation, it is
shown that this cross-section is proportional to (∂a/∂u)0

2) and ms is the frequency of
Raman scattering light with linewidth Dms. Therefore, the requirement of Raman
laser on its working material is: the Raman linewidth should be narrow, the dif-
ferential cross-section should be high. Of course, the material must be transparent in
the spectral region of Raman emission. From this basic requirement, we can study
the relationship of SRS performance with the structure and the chemical compo-
sition of materials.

Raman line broadening is induced by the anharmonic interaction of a crystal, in
which one phonon decays into two other phonons. One can easily imagine that
Raman spectral linewidth will be narrow for the materials with weak anharmonic
interaction. It is well known that the thermal conductivity and the thermal expan-
sion properties of a crystal are involved with the anharmonic interaction. Therefore,
the requirement for narrow Raman linewidth to the materials is consistent with that
of the high thermal conductivity and small thermal expansion. In other words,
materials with high thermal conductivity and small thermal expansion have narrow
Raman line. It is easy to imagine that the width of Raman line is proportional to the
coefficient of linear expansion aL and inversely proportional to specific heat Cv and
compressibility Kc

Dms / aL=KcVc ð11:89Þ

On the other hand, the high gain coefficient requires the materials have high
values of polarizability a and high values of ∂a/∂u. Two cases can satisfy these
requirements. First case is a has a relatively high value and also has a great variation
with the vibration; second case is a has not as high as the first case but has a greater
variation with the vibration.
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The crystals consist of molecule groups having the so-called “breathing vibra-
tional mode” which belong to irreducible representation A1g having a maximum
polarizability variation ∂a/∂u, also have a lowest-lying energy level of charge
transfer to act as an intermediate state to generate a high value of polarizability
tensor, because the value of polarizability tensor is inversely proportional to the
square of energy interval between initial state and intermediate state. Therefore, the
tungstate, molybdate, vanadate, and nitrate have both high values of a and ∂a/∂u,
thus have a high Raman scattering gain.

The second case is like the crystals such as diamond. They have the advantage of
the covalent crystal and have a higher value of ∂a/∂u than that of the ionic crystals
although without low-lying charge transfer level of molecular group to act as inter-
mediate state to result in a high value of polarizability. In addition, as will be men-
tioned below, the very narrow Raman spectral linewidth of diamond makes it have a
very high Raman gain coefficient. The data of Raman gain coefficient, Raman line-
width, and Raman frequency shift of some typical materials are given in Table 11.1.

Stankov and Marowsky [57] used Nd3+:KGW crystal pumped by flash lamp and
electro-optic Q switched to obtain 1067 nm fundamental wave laser, then by the
self SRS effect directly produce a first Stokes Raman line at 1180.8 nm, a second
Stokes line at 1321.5 nm, and a first anti-Stokes Raman line at 973.5 nm. By the
frequency doubling and mixing effects of nonlinear optical crystal LiIO3, laser
emissions of 355.6, 367, 378, 393, 408, 423, 440, 533.5, 560, 590, 620, and
660 nm, altogether 12 different wavelengths of ultraviolet and visible light were
obtained. Chang [65] demonstrated a continuous-wave self-Raman laser with high

Table 11.1 Relevant data of several materials with high gain coefficient of Raman scattering

Molecular formula Gain coefficient (cm/GW) Linewidth
(cm−1)

Raman shift
(cm−1)

PbWO4 [62] 8.4 (532 nm) �900

SrWO4 [63] 5.0 (1064 nm) 2.7 921

BaWO4 [63] 8.5 (1064 nm) 1.6 926

La2(WO4)3 [66] 30 (532 nm, estimated value) 940

KGd(WO4)2 [61] 6 (1064 nm) 5.9 901.5

SrMoO4 [64] 5.7 (1064 nm) 886

Li3Ba2Gd3(MoO4)8 [61] 4.7 (1064 nm) 3.1 768

YVO4 [72] �4.5 (1064 nm) <3.0 890,814

GdVO4 [73] �4.5 (1064 nm) <3.0 882,807

Ba(NO3)2 [61] 11 (1046 nm) 1047

CaCO3 [61] 13 (1085 nm) 2.3 1085

NaNO3 [61] 47 (1066 nm) 2.0 1066

Diamond [86] 12.5 (1064 nm) 1.5 1332

The pump wavelengths of Raman gain coefficients are indicated in the followed brackets. For the
diamond, if the pump wavelength is 532 nm the gain coefficient can reach 64 cm/GW [86]
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conversion efficiency by using Yb3+:KGW as Raman crystal, under the diode pump
power of 7.8 W. The CW Raman output power of 1.7 W was attained which
corresponds to the conversion efficiency of diode laser emission to Raman laser is
21.8%.

The laser, nonlinear optics, and Raman scattering properties of b′-Gd2 (MoO4)3
crystal were carefully studied by Kaminskii et al. [58]. The Curie temperature of
this crystal is about 159 °C; its structure belongs to space group Pba2 called b′
phase at the temperature lower than Curie point. It is a positive biaxial crystal with
2 V angle about 10°and has both high second-order and third-order nonlinear
optical effects. Owing to the fact that only small size of crystal can be obtained,
Kaminskii et al. used a ultrashort pulsed Nd3+:YAG laser at wavelength 1.06415lm
as the excitation source. After two-stage amplification, its energy reached about
10 mJ. The crystal was placed at the focus of a lens with f = 500 mm. The beam
waist was 75lm after focusing. With excitation in such a high laser power density,
the SRS spectra can be very clearly observed. The SRS spectra excited by the laser
at wavelength 1.06415lm are shown in Fig. 11.10. The SRS spectral lines excited
by laser beam at 0.53207 lm generated by frequency doubling of KD*P crystal are
shown in Fig. 11.11. If the fundamental laser at wavelength 1.06415 lm is along
the phase matching direction of Gd2 (MoO4)3 crystal, then the laser line at wave-
length 0.53207 lm and its two Stokes lines and one anti-Stokes line can be
observed (as shown in Fig. 11.12). Obviously, this is because b′-Gd2 (MoO4)3
crystal has a high enough second-order nonlinear optical coefficient, the laser beam
generated by Nd3+:YAG crystal is directly frequency doubled by b′-Gd2 (MoO4)3
crystal then to produce the Raman frequency shifted line around 0.53207 lm.

Many tungstate crystals, such as PbWO4, CaWO4, CdWO4, NaY(WO4)2, and
La2(WO4)3, can be used to generate SRS lines. The total Stokes conversion
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Fig. 11.10 Observed SRS spectra in b′-Gd2 (MoO4)3 crystal by using 1.06415 lm laser as
excitation source [58]
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efficiency of tetragonal NaY(WO4)2 and CaWO4 crystals at pumping power density
close to their optical damage threshold at k = 0.53207 mm reached 50%. For
PbWO4 it even reached 55% [66], while the fibrous La2(WO4)3 crystal of 80 mm
length pumped by power density about 0.165 GW/cm2, the conversion efficiency of
first Stokes stimulated Raman shift reached 6.8% [67]. Because La2(WO4)3 is one of
the tungstate crystals with high Raman gain coefficient and as being shown in
(11.87) that the total Raman gain coefficient G is proportional to the crystal length l,
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Fig. 11.11 Observed SRS spectra inb′-Gd2 (MoO4)3 crystal by using 0.53207 lm laser as
excitation source [58]

Fig. 11.12 Observed
0.53207lm laser line and
their two Stokes Raman lines
and one anti Stokes Raman
line obtained by 1.06415 lm
excitation laser beam along
the phase matching direction
of b′-Gd2 (MoO4)3 crystal
[58]
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it can be seen that the fibrous La2(WO4) crystal doped with rare earth ions can
become a good self Raman laser material.

The nanosecond Raman laser by using PbWO4 crystal as laser material has a
conversion efficiency up to 20%, which is expected to be used in the laser radar for
the detection of ozone [68]. The conversion efficiency is very closely related to the
crystal orientation, when the polarization direction of the excitation light is parallel to
the c-axis of the crystal, and conversion efficiency can reach its maximum but if the
polarization direction of the excitation light is vertical to the c-axis of the crystal, the
SRS conversion cannot be observed. The Raman gain coefficients of Nd3+:PbMoO4

crystals are two to three times larger than those of Nd3+:KGW and Nd3+:GdVO4

crystals. Under LD pumping of power 1.5 W, the output power of the free-running
mode at 1056 nm reached 0.65 W with slope efficiency up to 53% was achieved. By
using different LiF:F2

− saturable absorbers, a maximum pulse energy of 11 J at
1.4 ns pulse duration and maximum output power of 0.35 W (10 lJ) with 7 ns pulse
width in the passively Q-switched mode was obtained. The self-Raman-laser output
pulse energy of the first Stokes line at 1163 nm was measured to be as high as 6 lJ
and the pulse duration was estimated to be shorter than 500 ps [69].

Owing to the fact that third-order nonlinear optical effect is not limited by the
structure types of the material, the SRS effect has been observed in many of the
second-order nonlinear optical crystals such as b barium metaborate BBO [70] and
COB [71] crystals. Typical laser crystals YVO4 and GdVO4 can become SRS
crystals with good performance, conversion efficiency of fundamental laser to
Raman laser of these two vanadate crystals can be higher than 60% [72, 73] and the
continuous, Q-switched as well as mode-locked picosecond SRS laser have been
realized [74–78]. A fundamental laser beam and a self SRS laser beam generated by
Nd3+:GdVO4 crystal through the frequency sum mixing of LBO crystal to output a
laser beam of power 5.3 W at 559 nm wavelength [79] and by controlling Raman
cascade within an intracavity Raman laser crystal Nd3+:GdVO4, laser output at
532 nm (green), 559 nm (lime), 586 nm (yellow), and 620 nm (red) in watt level
were generated [80].

In recent years, the research of Raman lasers has developed rapidly. The
wavelength range has been widened, the operation pattern includes continuous,
nanosecond, picosecond, and femtosecond pulses, and the output energy, power,
and efficiency are increased greatly at the same time. A large number of articles
published in this field are too numerous to be enumerated. However, limited by
thermal lens effect, it is difficult to obtain higher energy and power output of
infrared laser by the self Raman effect of laser crystal such as tungsten and vanadate
or visible laser by frequency doubling and mixing.

Two Raman lasers which have been developed rapidly in recent years should be
mentioned.

First is the fiber Raman laser. Because the fiber has a very small loss coefficient
and considerable total Raman gain coefficient in a wide wavelength range, it
benefits from the aforementioned total Raman gain and is proportional to the length
of Raman medium, and so using optical fiber as a Raman laser material has a unique
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advantage. By using silicon fiber as a Raman gain medium pumped by Yb fiber
laser at wavelength 1070 nm, Raman laser output of 153 W at wavelength
1120 nm has been obtained in 2009. The light to light efficiency reached 85% [81].
In 2013, the continuous laser output power of cascaded Raman fiber laser has
reached 301 W with conversion efficiency 42% of pump light at 975 nm to Raman
laser output at 1480 nm [82], while the Yb fiber laser output of power 1.54 KW at
wavelength 1080 nm transform into Raman laser of power 1.28 KW at wavelength
1120 nm has been reported in 2014 [83]. The improvement of technology is
expected to further increase the power level, the wavelength range, and the beam
quality of Raman laser output.

Another is diamond Raman laser. The thermal conductivity of diamond is as
high as 2000 W/mK [84], which is higher than that of the above Raman crystals for
two or three orders of magnitude. Its room temperature coefficient of thermal
expansion is about 1�10−6/K [85]. This reflects the fact that the anharmonic effect
of this crystal is very weak. As previously described, the anharmonic effect of a
crystal is related to its linewidth of Raman line, the very weak anharmonic effect of
diamond results in a very narrow Raman linewidth which is favorable to the output
characteristics of a diamond Raman laser. The high thermal conductivity and low
thermal expansion coefficient of this crystal are beneficial to avoid thermal lens,
thermal birefringence, and stress destruction, thus eliminate the obstacles to
improve the output power and energy. On the other hand, this crystal has excellent
light transmittance in the wavelength range of 0.23–2.5lm, and its absorption
coefficient at 1.064 lm is less than 0.006 cm−1 [86]. A diamond crystal pumped by
CW Nd3+:YVO4 laser of power 31 W at wavelength 1064 nm has realized the
continuous Raman laser output of power 10.1 W at wavelength 1240 nm and a
slope efficiency as high as 49.7% [87]. Diamond Raman laser with output average
power up to 24.5 W, slope efficiency reached 57% [88], average power reached
hundred watt level, and conversion efficiency up to 34% have also been reported
[89]. The first Stokes shift of diamond as large as 1332 cm−1 also enables a dia-
mond Raman laser through direct or cascade mode to output laser emission in very
wide wavelength range. Sabella et al. [90] used OPO oscillator to output laser
emission at 2.5lm, then pump the diamond crystal. Through the tuning of the
oscillator wavelength, they obtained the laser output in the wavelength range of
3.38–3.80lm.

The output of diamond Raman laser has extended all over the deep UV [91],
visible [92, 93], near-infrared, [87–89] and mid infrared band [90]. Their powers
have attained 750 W with efficiency and beam quality so far unperturbed by
nonlinear or thermal-induced side effects [94]. It can be expected that with the
deepening of research work, Raman laser materials and devices with more different
wavelengths, higher power and energy as well as higher efficiency will appear in
the field of laser application.
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Chapter 12
Apparent Crystal Field Model of Laser
Glass and Its Application

Similar to crystals, glasses also have important applications in the area of optics and
photoelectronics. The laser glasses discussed in this chapter are one important part
in the photoelectronic ones, and have more important applications in laser oscil-
lation and amplification as well as transmission of optical information. The glass
fiber, waveguide, and film have wide applications in the micromation and inte-
gration of photoelectronic devices. The preparation, chemical and physical prop-
erties, and research advancement have been reviewed and the relations between the
compositions of glasses and the spectral properties of active ions, including the
Judd–Ofelt intensity parameters, lifetime of the multiplets, and energy transfer
probabilities, have also been analyzed [1–4].

The same as in crystals, a multiplet of rare earth ions in glasses generally splits
into several crystal field energy levels owing to the symmetry broken around the
ions. The disorder of the structure in glasses causes difficulty in both the theoretical
and experimental analyses of the optical transition between crystal field levels. The
crystal field levels can be determined from the peak positions of low temperature
absorption and emission spectra for crystals. However, the structural disorder of
glasses induces the inhomogeneous broadening of spectral lines, so the overlapping
among the spectral lines is serious even at low temperature and the positions of
crystal field levels are very difficult to be determined. Generally, this kind of work
is almost focused on the rare earth ions with simple structure of crystal field levels,
such as Eu3+ and Yb3+ [5, 6]. For the ions widely used in laser materials, such as
Nd3+, Er3+, and Pr3+, the research of the level positions and transitions between the
levels in glasses is challenging. The positions and widths of crystal field levels,
which depend on the composition and structure of host materials, will determine the
peak positions and widths of spectral lines that resulted from the transitions
between the crystal field levels, and so the laser properties of the glasses. The
studies of the crystal field levels of rare earth ions in glasses, like a bridge con-
necting the composition and structure of glasses with their spectral and laser
properties, are so important for the development of laser glasses.
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In this chapter, the structure and spectral characteristics of glasses are introduced
first. From the variety of the symmetries around the rare earth ions, it can be found
that the group chain method in the crystal field theory described in Chap. 3 is
effective for the analysis of spectral properties of rare earth ions in glasses, espe-
cially, for the relation between the properties with the structure of glasses.
Therefore, the group chain method will be used to analyze the spectra of rare earth
ions in glasses and some initial results will be presented.

12.1 Structure and Spectral Characteristics of Glasses

The structure of glasses is disordered in long range and the array of atoms can be
described as a continuous but non-periodical three-dimensional network. However,
the existence of short-range order is also well known. The meaning of short-range
order is that the array of atoms is more or less symmetrical in a local region
(generally less than 1.0 nm), but the lattice for each atom is not exactly uniform.
The short-range order has happened mostly around the elements of network former,
such as the local order around the Si, B, and P in oxide glasses. The structural units
having short-range order are generally polyhedrons constructed by strong covalent
bonds and definite nearest ligands, such as the SiO4 tetrahedron and BO3 triangle.
The structure of SiO2 glass is shown in Fig. 12.1. The SiO4 tetrahedron has definite
geometrical structure, but the bond angles, such as O–Si–O, can vary in a certain
range. The tetrahedrons connect each other by the corners (bridge oxygen), so the
bond angles of Si–O–Si can vary in a large range. The variation of the bond angles
a (O–Si–O) and b (Si–O–Si) causes the disordered three-dimensional network
structure of SiO2 glass and the SiO4 tetrahedron is the basic structural unit in the
network. Some compounds, for example, SiO2, GeO2, B2O3, and P2O5, can exist
lonely in one amorphous phase and become a simple glass former. Some com-
pounds, such as TeO, Al2O3, and WO3, and other compounds added for forming
glasses are called conditional glass formers. The other compounds change the
network of glasses, and generally, the anion connecting two cations of the network
former can become non-bridge, that is, it only connects with one cation but not two
cations and plays the role as a bridge in the network forming process. The cations of
network modifier, such as the alkali metal, alkaline earth, and other ions with higher
valence, occupy random positions close to the non-bridge anions. This is the
continuous random network model proposed by Zachariasen [7].

With the development of the measurement methods such as extended X-ray
absorption fine structure (EXAFS), neutron diffraction, and X-ray diffraction, the
ligand environment around particular ions in glass former and modifier can be
analyzed. First, the experimental results have revealed that the nearest ligand
environment around the cations in glass modifier is much more explicit than the
anticipation of the model mentioned above, furthermore, similar to the local ligand
environment in crystals. Secondly, it has been found that modifiers do not distribute
homogeneously in glasses, but form rich areas inhomogeneously in glass or
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separate the rich areas of glass former. This is very important for understanding the
fluorescence quenching effect of rare earth ions in glasses. Lastly, it has also been
found that the coordination number around cations and the distance between ions
have only slight change with the concentration. Consequently, the structure of glass
contains the disorder in long distance, order in short distance around the glass
formers, and order in middle distance around cations of the glass modifiers.

On the basis of the experimental results, Greaves [8] proposed a modified ran-
dom network model. The model shows that the cations of glass former and modifier
link with the bridge oxygen and non-bride oxygen in disorder, and the ligand
environment around the cations is orderly. The ligand number and the distance
between ions are invariable. Huang and Cormack [9, 10] confirmed the model
through the calculation of molecular dynamics. The glass structures described in the
normal and modified continuous random network models are compared in
Fig. 12.2.

Besides the two popular models mentioned above, there are several other models
describing the structure of inorganic glass [4]. Whichever model is adopted, it is
common that the ligand environments around rare earth ions in glass are different
from each other more or less.

In spectral experiments, one obvious result caused by the different environments
of rare earth is the broadening of full-width at half-maximum (FWHM) of spectral
lines. In the spectra of Er3+ ions in LiYF4 crystals recorded at 13 K, the FWHM of
the spectral lines corresponding to the transitions between crystal field energy levels
is between 1 and 4 cm−1 in general. However, recorded at the same temperature, the
FWHM of spectral lines for Er3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) is in

Fig. 12.1 The simple
structure model of SiO2 glass
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a range from 20 to larger than 100 cm−1. Although the ligands of Er3+ ions in both
the crystal and glass are the F− ions, the coordination number of Er3+ ions and the
bond length and angle between Er3+ and F− ions are variable in the glass. As a
result, the peak positions of spectral lines are different for Er3+ ions at different
locations. Generally, the measured spectral lines of rare earth ions are the sum-
mation of the individual spectral lines of the ions at different locations. This is why
the FWHMs of spectral lines for Er3+ ions in the ZBLAN glass are much larger than
those in the LiYF4 crystal.

In many oxide and fluoride glasses, the cations in the modifier display the
characteristics of ionic bond. Therefore, the Pauling’s rules in crystal chemistry for
the ionic structural architecture can be used to estimate the local environments [11]
and the following conclusion can be obtained: the coordination anion number is
determined by the radius ratio of the rare earth to the ligand ion. A rare earth ion with
radius ratio in a range from 0.414 to 0.732 should occupy a six-coordinated position,
while in a range from 0.732 to 0.904 the rare earth cation may occupy up to a
nine-coordinated position. Rare earth ions decrease in radius from about 0.120 to
0.085 nm with increasing atomic number due to the lanthanide contraction effect. In
oxide glasses, the ligand ions are essentially oxygen anions O2− with an ionic radius
of about 0.140 nm. Consequently, the ratio decreases from about 0.85 to 0.61 as the
rare earth atomic number increases. A notable feature in the ratio variation is that it
covers the transitional value 0.732, which represents the transition from a
six-coordinated state to higher coordination. Distinct change in local structure can be
expected as the 4f subshell of rare earth is filled and the ionic radius crosses the
transition value. For example, Er3+ should be six-coordinated by oxygen O2− (REr3+/
RO2− = 0.628 < 0.732), while the Nd3+ in oxide glass is capable of 7–9-coordinated
states (RNd3+/RO2− = 0.743 > 0.732). This has been confirmed in the rare earth
silicate crystal compounds, where smaller rare earth cations (Er3+, Tm3+, Yb3+, etc.)
have coordination number 6 (or 7 at very high rare earth concentration) and the
larger cations (Nd3+, Pr3+, Eu3+, etc.) have coordination numbers from 7 to 9.

Fig. 12.2 Two models of glass structure: a the continuous random network model; b the modified
continuous random network model

388 12 Apparent Crystal Field Model of Laser Glass and Its Application



According to the modified random network model, the same behavior should apply
for rare earth-doped oxide glasses, although with greater distortion due to the
long-range disorder. Many previous results of different types of experimental
spectroscopy on the local environments of rare earth ions in various glasses support
this ion size ratio-dependent characteristic.

Since the nearest neighbor ions (O2− for oxide glasses) have the strongest
influence on the central rare earth ions, their properties (e.g. bridging or
non-bridging) should be analyzed to further assess the regularity of the local en-
vironments of rare earth ions in glass. A detailed analysis of EXAFS measurements
confirmed that the regularity of the site occupied by the rare earth ion (i.e. the range
of distances to ligand ion) increases as polymerization decreases (dissociation of the
network by introducing the modifiers). This is caused, in part, by the increasing
number of non-bridged oxygen ions in the rare earth’s coordination sphere with
decreasing polymerization. Further, the regularity of the rare earth site also
increases as the size of the rare earth ions decreases. This is due to the fact that the
rare earth ions with smaller radius and higher crystal field-strength are easier to
coordinate with non-bridging oxygen.

In addition, the separation between rare earth ions plays a key role in their
spectral behavior. The modified random network model predicted the existence of
correlation and therefore clustering among the modifying cations in glass contrary
to the continuous random network model, which predicts a homogeneous distri-
bution of the rare earth. Upon application of the principles of crystal chemistry, it
follows that more glass-modifying cation species in a glass would induce a larger
spacing among the rare earth ions since larger structural units are preferably formed
over the smaller ones, and the number of essentially different types of constituent in
a system tends to be small (Pauling’s rule of parsimony). This means that different
species of modifying elements tend to be evenly distributed with respect to one
another within the modifier-rich regions.

In summary, from crystal chemistry principles on the bases of modified random
network model for glass structure, the local environments of the rare earth ions are
mainly influenced by the following three factors: the number of coordinating anions
around the rare earth ion is essentially governed by the radius ratio of the central
cation to the ligand anion; the regularity of the site is dominated by both the degree
of depolymerization of the network and the size of the rare earth ion; the
extra-modifying species are helpful in enlarging spacings among rare earth ions.
However, the condition of predominant ionic nature between a rare earth ion and its
ligand anion must be satisfied in order to utilize these conclusions.

These ideas demonstrate that a considerable change in environment is expected
for different rare earth ions in a certain glass host, as well as the same rare earth ion
in different hosts. In particular, we could expect a marked difference between the
elements in the two ends of the lanthanide series. This is contrary to the opinion that
all the rare earth ions should have similar local structures in a glass; therefore
contrary to the conclusion that the study of one rare earth ion’s local structure
would represent all the other ions’ local structures in the same glass. These results
also disagree with the pictures described by the conventional continuous random
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network model for glass, where the rare earth ion could have coordination numbers
from 6 to 12 and distribute uniformly throughout the glass.

According to the crystal chemistry model of the local environments of various
rare earth ions in glasses, the following points about the spectral features of the
various rare earth ions in oxide glasses can be generally inferred. Since the smaller
rare earth ions (Er3+, Tm3+, Yb3+, etc.) possess only six-coordinated sites and have
higher site regularities, the homogeneity of their spectra will be higher than those of
the larger rare earth ions (Nd3+, Pr3+, Eu3+, etc.), because the larger rare earth ions
could have different types of sites with 7–9-coordinated and lower site regularities.
The fluorescence decay characteristics for smaller rare earth ions in oxide glasses
should be more or less simple exponential, because only one six-coordinated site is
available rather than a variety of coordinated site, and this six-coordinated site
exhibits higher site regularity. The fluorescence decay characteristics for the larger
rare earth ions are expected to be non-exponential because of the much larger
site-to-site differences seen by these ions. In fact, the fluorescence decay of the
4F3=2 ! 4 I11=2 transition in Nd3+ in oxide glasses has always been found in a
non-simple exponential function with higher spectral inhomogeneity, whereas the
fluorescence decay of the 4F13=2 ! 4 I15=2 transition in Er3+ in oxide glasses has
exhibited a near-simple exponential characteristic with much lower spectral
inhomogeneity.

Using the crystal chemistry model, it is also able to realize the phenomenon that
the alumina-doped silica glass accommodates more rare earth element than the pure
silica glass. First, the structural role of Al3+ ions in the pure silica-glass needs to be
examined. In the alumina-doped silica, owing to the lack of extra free O2− ions,
Al3+ ions will act as a glass-modifying element (in six-coordinated state) rather than
going to the silica-glass network as a glass-forming element (four-coordinated
state). This view is supported by the evidence in alumino-silicate crystals and
alkali-free alumino-silicate glasses, where all Al3+ ions have a six-coordinated
structural configuration. The doped rare earth ions in silica glass also behave as
glass modifiers. Thus, according to the modified random network model of glass
structure, the modifier-rich region in the rare earth and alumina co-doped silica
glass will consist of both Al3+ and rare earth ions. Rare earth ions will be preferably
partitioned by Al3+ and forming Al–O–RE bonds, rather than only separated by a
O2− ion and forming RE–O–RE bonds in the modifier-rich regions. Subsequently,
larger spacing among rare earth elements is present in the alumina-doped silica host
than in the non-alumina-containing silica host. The spectral behavior of the rare
earth ion in the alumina-doped silica would thus be similar to that of the rare
earth-doped multi-component oxide glasses. In contrast with the germania-doped
silica host, the germania is forming part of the network along with silica; thus, there
is no effective modifying element in the modifier-rich region for partitioning rare
earths. As a consequence, more pronounced correlation and clustering effects are
present and earlier quenching is observed in the luminescent properties of the
germania-modified silica than those of the alumina-modified silica.
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In terms of rare earth-doped heavy metal fluoride (HMF) glasses, the model
mentioned above is also applicable because of the strong ionic nature of the fluoride
glasses. The structures of HMF glasses have been extensively studied and various
structural models have been proposed. It has been generally recognized that clas-
sification of glass formers and modifiers in HMF glasses is much more ambiguous
than that in the conventional multi-component oxide glasses. The fact that LaF3 and
AlF3 can stabilize HMF glasses indicates that the LaF3 and AlF3 act as intermediate
elements in the HMF glasses. Using the crystal chemistry model, the following
qualitative conclusions about rare earth local structures in the HMF glasses can be
introduced. All the rare earth ions in the HMF glasses are capable of having many
types of 7–9-coordinated sites owing to the smaller radius of F− ion (about
0.119 nm) inducing large rare earth ion to fluorine ion ratios (>0.732). Then,
because of the much higher ionicity between the rare earth cation and the fluorine
anion and much weaker polymerized network in the HMF glasses compared with
oxide glasses, the regularity of the site occupied by the rare earth ion in the HMF
glasses is much higher than that in the oxide glasses, and increases as the rare earth
ion radius decreases. For example, Tm3+ ions in silica-based glasses possess one
distinct type of site with a broad distribution of bond lengths or angles (low reg-
ularities), whereas in ZBLAN glass they are found to possess more than one distinct
type of sites with a narrow distribution of bond lengths and angles (high regular-
ities). Owing to the role of rare earth fluorides (ReF3) as intermediate element in
these glasses, they are able to be both in and out of network positions. This implies
that rare earth ions in HMF glasses are more evenly distributed. This behavior is in
distinct contrast with oxide glasses, in which rare earth ions play only the glass
modifier role. Further, the multi-component nature of these HMF glasses allows the
rare earth ion–ion separation characteristic to be more remarkable than that in the
common silica-based oxide glasses. The fact that fluorescence quenching of Er3+ in
the ZBLAN glass occurs at higher Er3+-doping level than in the oxide glasses is in
accord with the prediction by the crystal chemistry model. Similarly, it can be
predicted that the rare earth concentration-dependent fluorescence quenching effect
is also less in fluorophosphate glasses, because the rare earth is also an intermediate
element in this glass.

Clearly, the crystal chemistry model for the local structure of rare earth ions in
glasses can well describe and predict the spectral properties of the active ions,
including the concentration-dependent fluorescence quenching effect.

12.2 Apparent Crystal Field Hamiltonian for Rare Earth
Ions in Non-crystal Host

The rare earth-doped non-crystal and polycrystal play more important role in the
photoelectronic area. Besides the popular oxide and fluoride glasses, the rare
earth-doped sulfide glass can also be prepared as bulk, fiber, and film devices and
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become scholarly interests due to its low phonon energy, high refractivity, and
transparent in infrared. The Er3+ and Pr3+-doped fiber amplifiers are the key element
in optical fiber communications. Different from that in the crystals, local environ-
ment of rare earth ions in the above hosts are variant.

Local structures around rare earth ions in non-crystal materials can be investi-
gated using, for example EXAFS, neutron or X-ray scattering, and fluorescence line
narrowing (FLN) laser spectroscopy. Unlike the case of crystal, except the method
of FLN, only the average result, that is, the average number of coordination around
rare earth ion, the average distance between the rare earth ion and the ligands, and
the “average” local symmetry are obtained. The method of FLN still cannot
determine the local structures exactly. Consequently, the direct relation between the
point symmetry of the site occupied by a rare earth ion and its energy level splitting
cannot be built through crystal field Hamiltonian like in crystals.

Strictly, a rare earth ion cannot occupy a position with point symmetry higher
than C1 in non-crystal host. It means that radiative transition polarized in any
direction is permitted without retraction coming from point group symmetry se-
lection rule. Furthermore, the lack of long-range correlation between sites prevents
the use of polarization behavior as a criterion to identify a given transition.
Nevertheless, certain features common to the entire set of spectra indicate that some
degree of local order persists in the immediate environment of the emitting ion,
which has been proved in the above analysis of glass structure.

Conventionally, the analysis of crystal field levels for rare earth ions in non-crystal
host bymeans of the crystalfield theory is generally focused on the Eu3+ ionswith small
J number on the basis of themodel proposedbyBrecher andRiseberg [5]. In thismodel,
the C2v point group is adopted to describe the “average” local symmetry, that is, the
“average” crystal field Hamiltonian. The major reasons for adoption of the C2v are as
follows.First, it is thehighest symmetry inwhich full splittingof the 7F1 and 7F2 levels is
allowed. Secondly, it is a subgroup of almost all the point groups with higher sym-
metry inwhich rare earth ions are normally found, enabling application of the standard
technique of descending symmetries. And finally, it is the lowest symmetry for which
simple crystal field calculations can be routinely performed at that time. This model
can explain the crystal field splitting of Eu3+ ions in glasses very well. Although the
model was proposed for Eu3+ ions in silicate glasses, it has subsequently been applied
to the analysis of rare earth ions in many kinds of non-crystal hosts [12–14].

To explain the model clearly, Brecher and Riseberg assumed the geometrical
structure of the coordination around Eu3+ ions in silicate and fluoride glasses [5,
15]. However, experimental results have shown that the ligand environments, that
is, the point symmetries, around the rare earth ions in non-crystal hosts are variant
and do not support the assumption of single local environment. Consequently, the
physical basis of choosing C2v to describe the crystal field of rare earth ions in
glasses is not very sound. Moreover, the model only allows four transitions between
5D0 and 7F2 multiplets for Eu3+ ions, but the whole five transitions have been
observed in spectral experiments. Many spectral experiments have also revealed
that all the transitions between crystal field levels are allowed for rare earth ions in
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non-crystal hosts as in crystals with low symmetry, although the structure of energy
levels has the character of high point symmetry [16, 17]. This also cannot be
explained by the above model.

To relate the spectral properties of rare earth ions and the effect of ligand ions in
non-crystal materials more close to the reality, it is necessary to establish a simple
and practical crystal field model with sound physical basis from the real ligand
conditions around the rare earth ions in non-crystal hosts. The model is expected to
describe the spectral properties and the average results of energy level splitting, and
called apparent crystal field model. Owing to the fact that the crystal field is variable
in non-crystal host, the group chain scheme introduced in Chap. 3 may be a simple
and effective way for this purpose.

The group–subgroup relation of the 32 point groups (imbeddings of the crys-
tallographic point groups [18]) is shown in Fig. 12.3. The distortion from high to
low symmetries step by step is displayed clearly in the figure. With the high point
symmetries descending to low ones, the representations of group O3 or SO3 reduce
to their subgroups. The eigenfunctions of crystal field levels and the crystal field
Hamiltonian Hcf are expressed by a series of the irreducible representations of the
group chain from group to subgroup step by step. Suppose that the active ions
occupy the positions having the symmetry of point group G, then the Hcf is
invariant under the action of any elements of G, that is, it transforms as the scalar
irreducible representation. As an example, for the condition of G = D4, considering
the group chain to be SO3 � O � D4;Hcf , Hcf can be expressed as

Hcf ¼
X
k;l

Ck
lb

k
l ¼ C2

3b
2
3 þC4

1b
4
1 þC4

3b
4
3 þC6

1b
6
1 þC6

3b
6
3 ð12:1Þ

The parameters in this expression are defined in Chap. 3.
When the symmetry of environment descent to its subgroup G1, the terms in HG1

cf
should belong to identical representation of G1. Furthermore, the group–subgroup
branching rule tells us that the identical representation of G is still identical rep-
resentation of G1 when symmetry goes down from G to G1. Therefore, all the terms

C1

C3CsC2Ci

C3hC3vD3C3iC6C2vC2hD2C4S4

D3hD3dC6vC6hD6TD2hC4vD2dD4C4h

D6hTdOThD4h

Oh
Fig. 12.3 Group–subgroup
relation of the 32 point groups
[18]
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in HG
cf will appear in HG1

cf such as can be seen from Table 3.17. The terms of Hcf

with point group of higher symmetry, for example, O, will appear in most of the Hcf

with different point groups of lower symmetry. The lower symmetry position is
actually some kind of distortion from high symmetry position and the distortion
potential is always smaller than the high symmetry potential.

For rare earth ions in a glass, the terms of Hcf of rare earth ions in higher
symmetry positions will appear “repeatedly” in most of the Hcf of rare earth ions in
different lower symmetry positions and then take a more important part than other
terms belonging only to the particularly lower symmetry position in the effective
Hcf. Contrary to the choice of C2v which is a subgroup of almost all the higher
symmetry point groups [5], we consider a high symmetry point group with many
subgroups of lower symmetry to describe the apparent crystal field of rare earth ions
in glasses. The corresponding crystal field Hamiltonian is called the apparent crystal
field Hamiltonian Ha

cf .
For a given rotation group G, its isomorphic groups and its corresponding

rotation-inversion direct product group Gi = G � Ci have the same mathematical
expression of Hcf [19]. We first choose O, including Td and Oh, which have the
same expression of Hcf, as the high-point symmetry group (see Fig. 12.3). The
point symmetry D6 (or C6v, D3h, D6h) is not considered because positions with
symmetry of 6-fold rotation axis are rarely observed for active ions in crystal [20]
and so in glasses. In the group chain scheme, the Hcf of O point symmetry HO

cf has
only two terms, one for k = 4 and the other for k = 6, which will express the major
terms of the corresponding rank of Hcf for rare earth ions in glass Ha

cf . The term of
k = 2 only appears in crystal field with symmetry of group D4 (including C4v, D2d,
and D4h), D3 (including C3v and D3d) and lower symmetry groups, so there are two
possible choices for this term. After these considerations, the Ha

cf may be written in
a “simplified” group chain [21, 22] SO3 � O � D4 as

Ha
cf D4ð Þ ¼ C2

3b
2
3 þC4

1b
4
1 þC6

1b
6
1 ð12:2Þ

or SO3 � O � D3 as

Ha
cf D3ð Þ ¼ C2

5b
2
5 þC4

1b
4
1 þC6

1b
6
1 ð12:3Þ

In these equations, the terms C4
1b

4
1 and C6

1b
6
1 belong to the HO

cf and still exist in
the Hcf of its subgroup D4 and D3. The other terms of k = 4 and 6 in D4 and D3,
which do not belong to identical representation of point group O, can be neglected
because these components of crystal field are perturbation of crystal field of sym-
metry O. As a result, in the expressions of Ha

cf , only three crystal field parameters
C2
3 (or C2

5), C
4
1, and C6

1, one for each k, will be fitted by the values of crystal field
splitting data.

From (9.3.7) in [18], it can be easily shown that the relationship between the
crystal field parameters of the conventional JM scheme Bkq and the group chain
scheme Ck

l are:
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For D4 point symmetry:

C2
3 ¼ �B20;C

4
1 ¼

1
2

ffiffiffi
7
3

r
B40 þ

ffiffiffi
5
6

r
B44;C

4
3 ¼

1
2

ffiffiffi
5
3

r
B40 �

ffiffiffi
7
6

r
B44;

C6
1 ¼ � 1

2
ffiffiffi
2

p B60 þ
ffiffiffi
7

p

2
B64;C

6
3 ¼

1
2

ffiffiffi
7
2

r
B60 þ 1

2
B64

ð12:4Þ

and the relationship for D3 point symmetry has been shown in (3.31).
As having introduced above, the crystal field theory has been widely used to

analyze the energy level splitting of rare earth ions in crystals. However, a quan-
titative comparison of crystal field strengths for rare earth ions in different materials
cannot be made directly from the crystal field parameters. Therefore, as having
mentioned in Chap. 9, the concept of scalar crystal field strength was introduced by
Auzel [23, 24]. The relation between the scalar strength Nv and the crystal field
parameters is

Nv ¼
X
k;q

4p
2kþ 1

� �
Bkq
� �2" #1=2

¼
X
k;l

4p
2kþ 1

� �
Ck
l

� �2
" #1=2

ð12:5Þ

The strength of crystal field for rare earth ions in crystals and glasses can be
analyzed by means of the parameter Nv. Whatever the symmetry, the strengths of
crystal field for rare earth ions between different crystals, furthermore, between
crystal and non-crystal can be analyzed and compared quantificationally [13, 14,
23–25]. Subsequently, Leavitt [26] proposed the invariants of quadratic rotation as

sk ¼ 1
2kþ 1

X
q

Bkq
� �2" #1=2

¼ 1
2kþ 1

X
l

Ck
l

� �2
" #1=2

ð12:6Þ

Obviously, these invariants express the contributions of components k = 2, 4,
and 6 to the whole strength of crystal field. The relationship between the invariants
and the scalar strength is

Nv ¼ 4p
X

k¼2;4;6

skð Þ2
" #1=2

ð12:7Þ

Auzel and Malta [24] related the invariant sk with the maximum splitting of
multiplet DE, that is, the gap between the highest and lowest crystal field levels in
multiplet 2S+1LJ, as
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DEð Þ2¼ 12g2a
g ga þ 2ð Þ ga þ 1ð Þ

X
k¼2;4;6

SLJ½ � UðkÞ		 		 SLJ½ �
D E


 


2 f CðkÞ		 		fD E


 


2 skð Þ2

ð12:8Þ

where g = (2J + 1), ga is the effective degeneracy of the multiplet: ga = g/2 if J is a
half-integer. Furthermore, for the multiplets with J� 3 and the difference of

SLJ½ � UðkÞ		 		 SLJ½ �� �

 

2 for different k less than a factor of 10, the maximum splitting
of multiplet and the scalar strength of crystal field can be related by

DE ¼ 3g2a
p g ga þ 2ð Þ ga þ 1ð Þ

 �1=2 Y
k¼2;4;6

SLJ½ � UðkÞ		 		 SLJ½ �
D E


 


 f CðkÞ		 		fD E


 




" #1=3

Nv

ð12:9Þ

As an example, for the common active ion Nd3+ in solid-state laser materials, the
scalar strength of crystal field can be estimated from the maximum splitting of 4I9/2
multiplet in various hosts.

In Chap. 9, the analysis of self-activated Nd3+ laser crystal on the basis of the
scalar strength of crystal field introduced by Auzel has been mentioned. The
relation between the splitting of the 4I9/2 multiplet and the scalar strength of crystal
field for Nd3+ in a series of crystal and non-crystal materials is shown in Fig. 12.4.
The relation obeys (12.9). Besides applications in the analysis of spectra and energy
levels, the scalar strength of crystal field can be related with other properties. For
example, though there isn’t a general theory of melting points of solids (Tm), it may
be related with Nv by [27]

Tm � 0:48Nv þ 300 ð12:10Þ

where the intercept (300 °C) corresponds to the B00 term not contained in Nv. The
parameter Nv is also related with the hardness and cohesive energy of crystals [27].

The authors and Auzel compared the strengths of crystal field for different rare
earth ions in a host by means of Nv [28, 29]. From Fig. 12.5, it can be found that
there is a linear relationship between the scalar strength of Nd3+ and Er3+ in dif-
ferent crystals. An empirical relation between the crystal field strengths of Nd3+

ions with electron configuration 4f 3 and rare earth ions with 4fq has been proposed
by Auzel [29].

NV 4f qð Þ ¼ NV 4f 3
� �� 0:034ðq� 3ÞNV 4f 3

� �
Therefore, from the crystal field strength of one rare earth ion in a host, the

crystal field strength of other rare earth ions in the host can be estimated. This is
more beneficial to the Yb3+-doped materials. It is obvious that the scalar crystal
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field strength has important application in the analysis of rare earth ion-doped laser
materials.

In the apparent crystal field model mentioned above, there is only one term for
each k in the expressions of Ha

cf in (12.2) and (12.3). Therefore, for rare earth ions in
non-crystal host, the invariant of quadratic rotation in (12.8) can be substituted
directly by the crystal field parameter

DEð Þ2¼ 12g2a
g ga þ 2ð Þ ga þ 1ð Þ

X
k¼2;4;6

SLJ½ � UðkÞ		 		 SLJ½ �� �

 

2 f CðkÞ		 		f� �

 

2
2kþ 1

Ck
l

� �2

ð12:11Þ

In the conventional analysis of spectra and crystal field for rare earth ions in
crystals, the crystal field parameters are related with the crystal field splittings of
multiplets through the crystal field Hamiltonian. The parameters can be obtained by
calculating the eigenvalues of perturbation matrix and fitting with the values of
splittings recorded in low temperature spectral experiments. Now, on the basis of

1-NdP5O14, 2-LiNd(PO3)4, 3-Na2Nd2Pb6(PO4)Cl2, 4-Na5Nd(WO4)4, 5-Na(La,Nd)(WO4)2, 6-K5Nd(WO4)4,
7-K5Nd(MoO4)4, 8-NdAl3(BO3)4, 9-Na18Nd(BO3)7, 10-NdCl3, 11-(Nd,La)Ta7O19, 12-LiNdNbO4, 13-
tellurite glass, 14-Nd2O2S, 15-CaF2, 16-YAlO3(La,Nd), 17-Y3Al5O12(La,Nd), 18-Ba2MgGe2O7, 19-
NdNb5O14, 20-silicate flint glass, 21-Gd1.7Nd0.3(MoO4)3, 22-Li(Y,Nd)F4, 23-(Nd,La)F3, 24-Nd(C2H5ZO4)3,
25-Ca5(PO4)3F, 26-KY3F10, 27-Nd2S3, 28-YVO4, 29-PbMoO4, 30-LiNbO3, 31-phosphate glass, 32-
KY(MoO4)2, 33-CaAl4O7, 34-La2O3, 35-LaOF, 36-CaWO4, 37-NdCl3 in ice

Fig. 12.4 Maximum splitting of multiplet 4I9=2 Nd3þ
� �

versus Nv for different host materials [27]
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the apparent crystal field model, the crystal field parameters for rare earth ions in
non-crystal hosts can be related with the maximum splittings of multiplets by
(12.11) and the absolute values of the parameters can be obtained simply by linear
fitting process. The calculation is simple and the result is explicit; furthermore, the
requirement of spectral experiment is not excessive. As mentioned above, the large
inhomogeneous spectral line widths of rare earth ions in non-crystal hosts cause a
lot of trouble to identification of the spectral lines, which related to the transitions
between crystal field levels; so it is very difficult to determine all the splittings in a
multiplet. Especially, for the rare earth ions having important application in
solid-state laser materials, such as Er3+ and Nd3+, the determination is more difficult
due to the large J value of the multiplets related to laser operation and so the large
number of crystal field levels. By means of the apparent crystal field model, the
crystal field parameters for rare earth ions in non-crystal hosts can be calculated
from only the maximum splittings but not every splittings in the multiplets. It
means that the parameters may be obtained after the width of spectral band cor-
responding to the transitions between multiplets is measured at low temperature.
Then, the crystal field parameters can be used to analyze the properties of spectra
and laser of non-crystal materials.

Conventionally, the disorder of non-crystal materials causes a lot of trouble to
the analysis of crystal field and spectra of rare earth ions doped inside. Quite the
contrary, on the basis of the apparent crystal field model, the disorder makes the
calculation and analysis simpler than those in crystals. Auzel adopted a higher
icosahedral symmetry further to describe the apparent crystal field of non-crystal

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

LaCl3LaBr3

ThGeO4R(C2H5SO4)3°¡ 9H2O

LiRP4O12YPO4LuPO4

YVO4NaLa(MoO4)2
LaF3

CsCdBr3

CaWO4

LiYF4
Cs2NaRCl6YAlO3

Bi4Ge3O12

CaF2

Y3Ga5O12

Y2O3
Y3Sc2Al3O12Y3Al5O122120

19

18

17

16

15

14
13

12

11

10

9
8

7
6

5

4
3

21

N
v o

f E
r3+

 (c
m

-1
)

Nv of Nd3+ (cm-1)

1-LaCl3, 2-LaBr3, 3-ThGeO4, 4-R(C2H5SO4)3⋅9H2O, 5-YPO4, 6-LiRP4O12, 7-LuPO4, 8-YVO4, 9-
La(MoO4)2, 10-LaF3, 11-CsCdBr3, 12-CaWO4, 13-LiYF4, 14-Cs2NaRCl16, 15 -Bi4Ge3O12, 16-YAlO3, 17-
CaF2, 18-Y3Ga5O12, 19-Y2O3, 20-Y3Sc2Al3O12, 21-Y3Al5O12

Fig. 12.5 Crystal field strength of Nd3+ and Er3+ ions in different crystals
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and make the calculation more simple [30]. It can also be used to analyze the
spectral characteristics of rare earth ion in glasses but cannot deal with the subtle
crystal field splittings of a multiplet.

12.3 Crystal Field Level Analysis for Er3+ Ions in Three
Typical Glasses

Silicate, germanate, and ZBLAN glasses are three kinds of host materials widely
used in solid-state laser. Especially, the ZBLAN is the medium of the Er3+-doped
fiber amplifier, which is one of the key elements in the DWDM technique of optical
communications. In the following, the crystal field splittings of Er3+ ions in the
three glasses are systematically analyzed on the basis of the apparent crystal field
model [21, 22].

The samples used in the measurement of spectra, that is, silicate, germanate, and
ZBLAN glasses of formulas SiO2–Na2O, GeO2–BaO–K2O, and ZrF4–BaF2–LaF3–
AlF3–NaF, respectively, were cooled to 13 K. Absorption spectra of Er3+ ions were
recorded in a range from 400 to 1600 nm corresponding to the transitions from
4I15=2 ! 2 G9=2 to 4I15=2 ! 4 I13=2. A 488 nm Ar+ ion laser was used to excite Er3+

ions to their 4F7=2 multiplet. Fluorescence spectra corresponding to the
4S3=2 ! 4 I15=2; 4 S3=2 ! 4 I13=2, 4F9=2 ! 4 I15=2; 4 I11=2 ! 4 I15=2, and 4I13=2 !
4I15=2 transitions were measured.

The absorption and emission spectra recorded at 13 K were resolved into dif-
ferent components with Voigt-type profile. This profile was chosen because the
linewidth may contain homogeneous and inhomogeneous broadenings with
Lorenzian and Gaussian profiles, respectively. The central position, FWHM, and
area of each separated spectral line were determined. At 13 K, the higher levels in
multiplets have much lower populations and the spectra are predominated by the
transitions from the lowest levels in multiplets. As an example, Fig. 12.6 shows the
fitted Voigt components in the emission spectral bands of the transition from
4S3=2 to 4I15=2 for Er3+ ions in the silicate, germanate, and ZBLAN. The spectral
lines corresponding to transitions from the lower crystal field level (level 1 in the
figure) in 4S3=2 to all the crystal field levels (levels 1–8 in the figure) in 4S15=2 are
pointed out.

Previous studies on Eu3+ ions in glasses have shown that, due to the low-point
symmetries of the sites occupied by rare earth ions, the multiplets of the ions split
thoroughly [7, 15]. For Er3+ ions, the J multiplet splits into (2J + 1)/2 crystal field
levels after taking into account the Kramers degeneracy. Owing to the large
inhomogeneous width, some of the spectral lines mix in one Voigt profile and make
the number of observable lines, corresponding to the transitions between some
couples of multiplets, less than the number of expected spectral lines. In view of
this, the FWHM, the area under spectral line corresponding to the intensity of
transition, and the expected number of spectral lines are considered. For a line with
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extremely large values of FWHM and area, more than one transition can be rea-
sonably involved in the line. Some of the mixing lines will be separated after all the
related experimental spectra are resolved. Finally, the central positions and widths
of the crystal field levels for Er3+ ions in silicate, germanate, and ZBLAN glasses
obtained from the above resolving are listed in Table 12.1. The uncertainty on the
crystal field level positions determined from the experimental spectra is 12 cm−1 for
all the three glasses.

When two levels are overlapped together, another choice is also given in the
table and signed by “*”: we assume that the two levels have the same shape and that
their central positions are separated by a distance as large as possible before they
can be separated by the procedure mentioned above, then we have (Rayleigh
criterion)

w ¼ 0:7 w1 þw2ð Þ;w1 ¼ w2

so that

1   7+8

1   6
1    4+5

1    3

1    1+2

(a) 1   7+8

1    6

1    4+5

1    2+3

1    1

(b)
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1    3
(c) 1    7+8
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1    4+5
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1    1

Fig. 12.6 Voigt profile fit to
the emission spectra of
4S3=2 ! 4 I15=2 transitions of
Er3+ at 13 K. a Silicate,
b germanate, and c ZBLAN
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Table 12.1 Positions and
widths of crystal field levels
of Er3+ ions in silicate,
germanate and ZBLAN
glasses from experimental
spectra at 13 K (cm−1).

Manifold Position Width

* *
4I15=2 0 0.5

23 11

50 15

70 38

139 45

295 147

414 386(
p
) 133 95(

p
)

414 443(
p
) 95(

p
)

4I13=2 6498 23

6503 24

6540 24

6559 26

6582 47

6760 81

6820 68
4I11=2 10,205 13

10,223 18

10,240 10,228(
p
) 54 39(

p
)

10,240 10,252(
p
) 39(

p
)

10,338(
p
) 10,321 79(

p
) 56

10,338(
p
) 10,355 56

4I9=2 12,384 79

12,438 49

12,543 98

12,614 12,601(
p
) 60 43(

p
)

12,614 12,627(
p
) 43(

p
)

4F9=2 15,203 28

15,232 39

15,348 58

15,392 55

15,494 60
4S3=2 18,291 35

18,348 99
2H11=2 19,129 24

19,161 44

19,210 36

19,268 52

19,301 20

19,323 24
(continued)
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Table 12.1 (continued) Manifold Position Width

* *
4F7=2 20,456 30

20,522 55

20,572 32

20,613 99
4F5=2 22,145 22,136(

p
) 44 31(

p
)

22,145 22,154(
p
) 31(

p
)

22,265 52
4F3=2 22,509 61

22,610 75
2G9=2 24,440 64

24,516 61

24,555 49

24,606 40

24,642 38

(b)
4I15=2 0 18

35 29

63 21

95 82(
p
) 60 43(

p
)

95 108(
p
) 43(

p
)

274 161

377 135

457 94
4I13=2 6488 5

6500 20

6530 10

6564 8

6595 40

6754(
p
) 6719 160(

p
) 114

6754(
p
) 6788 114

4I11=2 10,202 7

10,224 65

10,224

10,224

10,330 10,316(
p
) 64 46(

p
)

10,330 10,343(
p
) 46(

p
)

4I9=2 12,386 102

12,432 32

12,542 80

12,615(
p
) 12,605 47(

p
) 34

12,615(
p
) 12,625 34

(continued)
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Table 12.1 (continued) Manifold Position Width

* *
4F9=2 15,183 12

15,219 28

15,337 48

15,382 31

15,480 54
4S3=2 18,262 35

18,329 43
2H11=2 19,108 36

19,145 14

19,186 18

19,255 47

19,280 0

19,309 6
4F7=2 20,425 31

20,498 48

20,549 14

20,586 100
4F5=2 22,119 22,108(

p
) 48 34(

p
)

22,119 22,129(
p
) 34(

p
)

22,242 25
4F3=2 22,496 72

22,594 54
2G9=2 24,427 107

24,509 25

24,549 25

24,593 17

24,629 38

(c)
4I15=2 0 40

47 54

111 51

154 30

194 57

226 82

308(
p
) 275 154(

p
) 110

308(
p
) 341 110

4I13=2 6542 29

6569 32

6603 18

6631 33
(continued)
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Table 12.1 (continued) Manifold Position Width

* *

6696 6677(
p
) 87 62(

p
)

6696 6715(
p
) 62(

p
)

6780 81
4I11=2 10,228 20

10,289 10,267(
p
) 59 30(

p
)

10,289 10,285(
p
) 30(

p
)

10,289 10,289(
p
) 30(

p
)

10,289 10,293(
p
) 30(

p
)

10,289 10,311(
p
) 30(

p
)

4I9=2 12,413 4

12,472 35

12,538 40

12,617(
p
) 12,604 61(

p
) 44

12,617(
p
) 12,630 44

4F9=2 15,271 26

15,301 44

15,361 47

15,398 8

15,449 62
4S3=2 18,429 11

18,525 46
2H11=2 19,160 18

19,203 3

19,235 0

19,267 0

19,309(
p
) 19,300 42(

p
) 30

19,309(
p
) 19,318 30

4F7=2 20,541 20

20,586 18

20,643 20,619(
p
) 114 81(

p
)

20,643 20,667(
p
) 81(

p
)

4F5=2 22,244 24

22,273 22,264(
p
) 44 31(

p
)

22,273 22,282(
p
) 31(

p
)

4F3=2 22,571 30

22,664 69
2G9=2 24,545 0

24,582 18

24,631 17

24,689 24,679(
p
) 47 34(

p
)

24,689 24,699(
p
) 34(

p
)
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w ¼ 1:4w1

where w is the total width determined by spectral line while w1 and w2 are,
respectively, the widths of the two single levels. As a result, the central positions of
the two levels are

xc1 ¼ xc� 0:3w1; xc2 ¼ xcþ 0:3w2

where xc is the central position of the mixing level, while xc1 and xc2 are the central
positions of the two levels, respectively. After the apparent crystal field analysis
presented in the following, one of these two data for overlapping levels will be
chosen and signed by “(

p
)” in Table 12.1.

To relate the crystal field splitting of Er3+ ions with the apparent crystal field, the
parameters Ck

l were first estimated through fitting the crystal field splittings listed in
Table 12.1 directly by the apparent crystal field Hamiltonian expressed in (12.2) or
(12.3) in the conventional way [31]. Simultaneously, (12.11) for the scalar crystal
field strength could also be used to derive the absolute values of parameters Ck

l by
fitting the experimental values of DE obtained from Table 12.1 by a least-squares
fitting procedure. Then, the signs of the values were determined by comparing the
crystal field splittings calculated from the parameters Ck

l by (12.2) or (12.3) and the
experimental data. In the calculations, the intermediate coupling wavefunctions
given by Weber [32] and the values of reduced matrix elements aSL U kð Þ		 		aSL� �
provided in [33] were used to obtain the values of SLJ½ � UðkÞ		 		 SLJ½ �� �

; and the
J-mixing was not taken into account.

To verify the assumption on Ha
cf , a series of Hamiltonian Hcf from point sym-

metry O (including Td and Oh), D4 (including C4v, D2d, and D4h), D3 (including C3v

and D3d), to D2 (including C2v and D2h), which contain all the possible crystal field
parameters, were also adopted to fit the crystal field splittings of Er3+ ions in the
three glasses. The root-mean-square (RMS) deviations of all the calculations are
shown in Fig. 12.7a, b, and c, respectively, for Er3+ ions in silicate, germanate, and
ZBLAN. Because some of the crystal field levels cannot be resolved in the
experiment, different possible choices of level structure should be considered and
the ranges of the RMS deviations are represented by error bars in Fig. 12.7. On the
x-axis, the various point symmetries used in the analysis are distributed: the positive
direction represents the distortion along the chain of O � D4 � D2, and the negative
direction represents the distortion along the chain of O � D3. The apparent crystal
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field Hamiltonians are represented by Ha
cf D4ð Þ and Ha

cf D3ð Þ, locating in the group

chains O � D4 � D2 and O � D3, respectively. For the convenience of presentation,
the distance between the representations of the different symmetries has arbitrarily
been chosen as the difference of the numbers of crystal field parameters included in
the fitting process, for example, there are two crystal field parameters for O point
symmetry and five for D4, so the distance between them is 3 units.

For the silicate and germanate glasses, although there is only one more adjus-
table parameter, C2

3, in H
a
cf D4ð Þ than in HO

cf , the RMS deviations shown in Fig. 12.7a,

b have remarkably smaller values in the Ha
cf D4ð Þ. Moreover, Ha

cf D4ð Þ, H
D4
cf , and HD2

cf

have similar values of RMS although the numbers of adjustable parameters in the
Hamiltonian are 3, 5, and 9, respectively. On the other hand, the values of RMS
show that Ha

cf D4ð Þ is much better than Ha
cf D3ð Þ for expressing the apparent crystal field

Hamiltonian of Er3+ ions in the oxide glasses. As a whole, the RMS deviations have
smaller values in the direction O � D4 � D2 than in O � D3, especially when the
number of fitting parameters is considered. From Fig. 12.7a, b, it can be concluded
that the Er3+ ions in the oxide glasses occupy preferentially the positions with point
symmetry of D4, D2d, C4v, D4h and their subgroups, that is, the positions with the 4-
and twofold rotation axes rather the threefold rotation axis. Figure 12.7a, b also

10

15

20

25

30

35

40
(c)

D3 G(D3) D2D4G(D4) O

R
M

S 
(c

m-1
)

15

20

25

30

35

40
(b)

15

20

25

30

35

40
(a) fitted by CF Hamiltonian

fitted by scalar CF strength 

Fig. 12.7 RMS deviations
between the experimental
crystal field splittings and
those calculated by crystal
field Hamiltonian of O, D4,
D3, D2 point symmetries and
the apparent crystal field
model proposed for
non-crystal, Ha

cf D4ð Þ and
Ha

cf D3ð Þ. a Silicate,
b germanate, and c ZBLAN.
The ranges of RMS, for all
possible choices of level
structure, are shown as error
bars
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show that the parameters Ck
l could be obtained through fitting the maximum

splittings of multiplets by (12.11). Then all crystal field splittings could be calcu-
lated by (12.2) from the parameters. The RMS deviations between the calculated
and experimental data of crystal field splitting are almost the same as those of fitting
all the crystal field splittings in the conventional way by (12.2). Moreover, the Ck

l

obtained by these two different procedures are listed in Table 12.2 and have very
similar values. Consequently, the crystal field splittings of Er3+ ions in the oxide
glasses calculated by Ha

cf D4ð Þ in which the parameters Ck
l were obtained from the

scalar crystal field strength analysis (12.11) are listed and compared with the data
obtained from the low temperature spectra in Table 12.3. After the analysis, the
positions of the levels appearing mixed in spectral experiments were determined
(see the levels signed “(√)” in Table 12.1).

For the ZBLAN glass, Fig. 12.7c demonstrates that, different from the oxide
glasses, the RMS deviations have similar values in both directions of the group
chains O � D4 � D2 and O � D3; especially, the deviations do not decrease
remarkably from HO

cf to apparent glass Hamiltonian Ha
cf D4ð Þ or H

a
cf D3ð Þ. Therefore, it

can be supposed that Er3+ ions in the ZBLAN glass can equally occupy positions
with any kind of point symmetries, that is, symmetries distorted not only from D4,
D4h and their isomorphic groups but also from D3, D3d and their isomorphic groups.
Comparing the experimental data for crystal field splittings and the data calculated
by Ha

cf , the parameters Ck
l in Ha

cf could be obtained through fitting the maximum
splittings of multiplet by (12.11) or fitting all of the crystal field splittings in
conventional way by (12.2) or (12.3). The RMS deviations are different for these
two ways (see Fig. 12.7c), and the Ck

l got by these two different procedures are

listed in Table 12.4. In the oxide glasses, the values of Ck
l got by these two different

procedures are very similar (see Table 12.2); however, in the ZBLAN glass, the
values are different. The above results show that the symmetry of the apparent
crystal field for the ZBLAN glass is higher than that for the oxide glasses, so the
crystal field cannot be expressed by Ha

cf D4ð Þ or H
a
cf D3ð Þ alone.

The crystal field splittings calculated by Ha
cf D4ð Þ and Ha

cf D3ð Þ with parameters Ck
l

obtained from the scalar crystal field strength analysis (12.11) are listed and
compared with the experimental data in Table 12.5. In this table, the average values
of the crystal field splittings calculated by Ha

cf D4ð Þ and Ha
cf D3ð Þ are also given out.

Table 12.2 Parameters Ck
l and Nv of Er

3+ ions in silicate and germanate glasses (cm−1)

Silicate Germanate

Fitting DE Fitting crystal field level Fitting DE Fitting crystal field level

C2
3 683.3 672.2 706.2 669.1

C4
1 2477.7 2535.6 2274.5 2290.5

C6
1 −95.2 −96.1 −471.5 −506.6

Nv 3123 3182 2948 2949
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Table 12.3 Comparison of experimental and calculated crystal field splittings of Er3+ ions in
silicate and germanate glasses (cm−1)

Multiplet Silicate Germanate

Exp. Cal. Exp. Cal.
4I15=2 −175.7 −181.6 −174.7 −168.6

−152.3 −151.7 −139.3 −149.6

−125.8 −129.9 −111.6 −128.5

−105.9 −65.3 −92.3 −57.2

−36.6 −10.2 −66.7 −45.8

119.2 83.3 99.7 84.1

210.1 222.3 202.5 223.6

266.9 233.1 282.5 241.9
4I13=2 −110.9 −133.6 −109.5 −121.3

−105.9 −117.0 −97.5 −117.5

−68.8 −76.5 −67.9 −66.6

−49.8 −26.9 −34.1 −29.7

−26.8 35.1 −2.7 24.8

151.1 150.2 155.8 154.0

211.1 168.6 155.8 156.3
4I11=2 −58.9 −76.0 −53.9 −74.2

−41.0 −58.9 −31.3 −54.3

−35.6 −25.4 −31.3 −21.6

−12.4 −6.6 −31.3 −11.8

74.0 73.9 60.2 75.6

74.0 93.1 87.6 86.4
4I9=2 −134.6 −106.6 −132.0 −112.3

−80.6 −98.9 −86.0 −103.6

24.4 47.0 24.0 29.7

82.5 62.1 97.0 88.5

108.3 96.3 97.0 97.7
4F9=2 −131.1 −118.5 −137.2 −107.9

−101.7 −82.6 −101.2 −73.9

14.3 10.4 16.8 −4.2

58.3 34.2 61.8 28.9

160.3 156.5 159.8 157.1
4S3=2 −28.3 −37.9 −33.4 −39.1

28.3 37.9 33.4 39.1
2H11=2 −103.0 −90.3 −105.8 −91.6

−71.0 −80.4 −68.8 −82.0

−22.0 −41.5 −27.8 −18.0

36.0 57.5 41.2 50.1

69.0 63.9 66.2 56.2

91.0 90.9 95.2 85.3
(continued)
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The RMS deviations of 21.3 cm−1 for Ha
cf D4ð Þ and 21.6 cm−1 for Ha

cf D3ð Þ decreasing
to 18.9 cm−1 for the average result shows that, in the analysis of apparent crystal
field in ZBLAN glass, the combination of Ha

cf D4ð Þ and H
a
cf D3ð Þ may be a suitable way.

The values of the scalar crystal field strength parameter Nv calculated by (12.5)
are listed in Tables 12.2 and 12.4. For Er3+ ions in the oxide glasses, silicate and
germanate, the values are around 3000 cm−1; while in the ZBLAN glass, the values
are only around 2000 cm−1. It shows that the first neighbor anions take a crucial
part in the crystal field strength and the crystal field for the oxide is generally much
stronger than that for the fluoride.

In the conventional way, a “pure” and low-point symmetry was tried to describe
the average environment of rare earth ions in glasses. On the basis of the fact that
the disordered structure of glass leads to site-to-site variations at the rare earth ion
sites, an apparent crystal field Hamiltonian for the rare earth ions has been intro-
duced by means of the group chain scheme. Although this is a simple model and
only three parameters Ck

l of the Hamiltonian are considered, it has been used to

Table 12.3 (continued)

Multiplet Silicate Germanate

Exp. Cal. Exp. Cal.
4F7=2 −84.8 −90.6 −89.7 −99.9

−18.8 −32.5 −16.4 −21.7

31.3 52.3 34.6 40.7

72.3 70.8 71.6 80.8
4F5=2 −49.4 −42.9 −51.4 −42.0

−30.6 −1.0 −30.8 0.6

80.0 43.8 82.2 41.4
4F3=2 −50.5 −55.4 −49 −57.2

50.5 55.4 49 57.2
2G9=2 −111.8 −94.6 −114.4 −99.4

−35.8 −81.2 −32.4 −84.1

3.2 36.6 7.6 23.0

54.2 46.5 51.6 66.1

90.2 92.7 87.6 94.6

RMS dev. 21.9 19.3

Table 12.4 Parameters Ck
l and Nv of Er

3+ ions in ZBLAN glass (cm−1)

Fitting DE Fitting crystal field level by Hglass
cf D4ð Þ Fitting crystal field level by Hglass

cf D3ð Þ

C2
l 503.8 509.6 583.5

C4
1 1597.6 1376.6 1295.8

C6
1 −367.0 −482.9 −497.9

Nv 2081 1877 1855
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Table 12.5 Comparison of
experimental and calculated
crystal field splittings of Er3+

ions in ZBLAN glass (cm−1)

Multiplet Exp. Cal.

Hglass
cf D4ð Þ Hglass

cf D3ð Þ Average

4I15=2 −168.3 −119.1 −150.1 −134.6

−121.6 −109.6 −113.1 −111.4

−57.2 −89.5 −54.1 −71.8

−14.3 −40.9 −49.6 −45.3

25.2 −34.0 −34.6 −34.3

57.3 60.4 116.0 88.2

139.5 158.6 138.6 148.6

139.5 174.1 146.9 160.5
4I13=2 −103.0 −85.1 −120.0 −102.6

−76.0 −83.7 −64.4 −74.1

−42.4 −46.5 −35.4 −40.9

−14.4 −21.7 −29.3 −25.5

31.9 17.0 80.7 48.8

69.3 110.0 82.2 96.1

134.6 110.0 86.2 98.1
4I11=2 −51.1 −52.6 −72.4 −62.5

−11.8 −38.1 −30.4 −34.3

6.2 −15.0 −15.8 −15.4

10.2 −8.9 36.4 13.7

14.2 54.0 38.2 46.1

32.2 60.8 44.1 52.4
4I9=2 −118.4 −80.3 −82.2 −81.3

−59.4 −74.1 −72.8 −73.4

6.6 16.1 17.8 17.0

85.6 65.7 67.9 66.8

85.6 72.6 69.3 70.9
4I9=2 −85.0 −75.7 −90.9 −83.3

−55.0 −51.8 −57.0 −54.4

5.0 −4.2 15.4 5.6

42.0 20.1 46.5 33.3

93.0 111.7 86.0 98.9
4S3=2 −47.8 −27.9 −27.9 −27.9

47.8 27.9 27.9 27.9
2H11=2 −87.2 −65.2 −63.1 −64.1

−44.2 −58.5 −60.3 −59.4

−12.2 −10.8 −11.3 −11.0

19.8 35.0 34.9 35.0

61.8 39.3 39.1 39.2

61.8 60.1 60.7 60.4
(continued)
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explain the spectral properties of rare earth ions in non-crystal materials in a rather
realistic way.

The fitting results have shown that the Hamiltonian Ha
cf D4ð Þ is more suitable than

Ha
cf D3ð Þ for describing the apparent crystal field of Er3+ ions in the silicate and

germanate oxide glasses. This means that the Er3+ ions in the oxide glasses could
not equally occupy positions with any kind of point symmetries. This conclusion is
in agreement with those mentioned in Sect. 12.1, that is, rare earth ions can only
play a role as network modifier in oxide glasses but cannot joint the network of
host, and the Er3+ ions in oxide glasses can only have coordination number 6 [11].
Because of the strong ionic nature of the fluoride glasses, the rare earth fluorides
play a role as an intermediate element in the glasses. They are able to be both in and
out of network positions. On the other hand, all rare earth ions in the fluoride
glasses are capable of having 7–9-coordinated sites owing to the smaller radius of
F− ion [11]. As a result, the rare earth ions in fluoride glasses possess more than one
distinct type of sites. This implies that rare earth ions in fluoride glasses may be
more evenly distributed. As an apparent result, the Hamiltonian for fluoride glass
may have “higher” point symmetry than for oxide glass.

By means of the group chain scheme, the apparent crystal field Hamiltonian has
the characteristic of high-point symmetry close to the O point group. The cubic
crystal field terms (C4

1 and C6
1) give the major contribution to the crystal field

strength when the term from the low symmetry (C2
3 or C2

5) allows the complete
removal of degeneracy. Such a consideration explains why transitions between
crystal field levels of rare earth ions are allowed in glasses as in crystal with

Table 12.5 (continued) Multiplet Exp. Cal.

Hglass
cf D4ð Þ Hglass

cf D3ð Þ Average

4F7=2 −62.3 −71.8 −58.7 −65.3

−17.3 −14.6 −16.7 −15.6

15.4 28.0 −1.0 13.5

64.2 58.4 76.4 67.4
4F5=2 −19.3 −29.8 −17.1 −23.4

0.3 0.5 −17.0 −8.2

19.1 29.2 34.1 31.6
4F3=2 −46.5 −40.8 −40.8 −40.8

46.5 40.8 40.8 40.8
2G9=2 −82.2 −71.1 −74.5 −72.8

−45.2 −60.1 −58.9 −59.5

3.8 12.5 17.4 14.9

51.7 49.5 55.7 52.6

71.9 69.2 60.3 64.7

RMS dev. 21.3 21.6 18.9
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low-point symmetry, but at the same time the structure of levels displays the feature
of high-point symmetry [34].

In conclusion, on the basis of the apparent crystal field model the crystal field
splittings of Er3+-doped glasses, which have important applications in the area of
photoelectronics, can be analyzed quite completely and systematically. Obviously,
this is a simple method for analyzing energy level splitting of rare earth ions in
disordered hosts. The values of the splittings are essential for predicting properties
of spectra and laser of rare earth-doped glasses [35–38].
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Appendix A
Character Tables for Point-Symmetry
Group

In this appendix the tables of irreducible representation character are given by using
three different representation labels adopted by Milliken, Bethe, and Butler for the
convenient of comparison. The spatial basis functions are only given for the usage
in this book.

Note The first and the second column on the left are the Milliken symbols
correspond to the point groups of the first and the second row respectively, the
following tables where the Milliken symbols of two groups being different are also
so arranged
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Note x = e−ip/3, x3 = −1, here C2 and C3 are defined as those of Butler, which
are different from Koster et al defined in “Properties of the thirty-two point groups”,
there are similar differences in the following tables
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Note The Milliken symbols of point groups C6v and D6 are as shown above; the
Milliken symbol of point group D3h are: C1 ! A0

1, C2 ! A0
2, C3 ! A00

1, C4 ! A00
2, C5

! E″, C6 ! E′
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Appendix B
Correlation Table of Group–Subgroup

In the following tables, the orbital angular momentum quantum number will be
used to label the irreducible representation of SO3 group, but the subscripts of Bethe
symbols are used to label those of point groups. When more than one irreducible
representation of subgroup corresponds to one irreducible representation, right
subscripts are used to distinguish. Sign of + and − in front of the symbols of
irreducible representation of subgroup means that corresponding 2jm factor equal to
+1 and −1, respectively. For the point group having central symmetry the symbol
with superscript + represents even irreducible representation and the symbol with
superscript − represents odd irreducible representation.
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Appendix C
Multiplication Tables for Some Point
Groups

In the following tables, the subscripts of Bethe’s symbol are used to represent
irreducible representation, and the direct summations of irreducible representation
are denoted by the symbol ⊕.

Point group C2 and Cs
1 2 3 4 Subscript i of i

1 2 3 4 1 
 1 4 3 2 
  2 1 3 
   2 4 

Point group C3

1 2 3 4 5 6 Subscript i of i

1 2 3 4 5 6 1 
 3 1 6 4 5 2 
  2 5 6 4 3 
   2 1 3 4 
    3 2 5 
     1 6 

Point group C4 S4

1 2 3 4 5 6 7 8 Subscript i of i

1 2 3 4 5 6 7 8 1 
 1 4 3 7 8 5 6 2 
  2 1 8 5 6 7 3 
   2 6 7 8 5 4 
    3 1 4 2 5 
     4 2 3 6 
      3 1 7 
       4 8 

Point group D2 C2v

1 2 3 4 5 Subscript i of i

1 2 3 4 5 1 
 1 4 3 5 2 
  1 2 5 3 
   1 5 4 

1 2 3 4 5
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Point group D3 C3v

1 2 3 4 5 6 Subscript i of i

1 2 3 4 5 6 1 
 1 3 4 6 5 2 

1 2 3 4 5 6 4 4 3 
1 2 3 3 3 4 

    2 1 5 
     2 6 

Point group D4 C4v D2d

1 2 3 4 5 6 7 Subscript i of i

1 2 3 4 5 6 7 1 
 1 4 3 5 6 7 2 
  1 2 5 7 6 3 
   1 5 7 6 4 

1 2 3 4 6 7 6 7 5
1 2 5 3 4 5 6

1 2 5 7
Point group T

1 2 3 4 5 6 7 Subscript i of i

1 2 3 4 5 6 7 1 
 3 1 4 6 7 5 2 
  2 4 7 5 6 3 

1 2 3 3 4 5 6 7 5 6 7 5 6 7 4
1 4 2 4 3 4 5

3 4 1 4 6
2 4 7

Point group O Td

1 2 3 4 5 6 7 8 Subscript i of i

1 2 3 4 5 6 7 8 1 
 1 3 5 4 7 6 8 2 

1 2 3 4 5 4 5 8 8 6 7 8 3
1 3 4 5 2 3 4 5 6 8 7 8 6 7 8 8 4

1 3 4 5 7 8 6 8 6 7 8 8 5
1 4 2 5 3 4 5 6

1 4 3 4 5 7
1 2 3 4

4 5 5 8
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Appendix D
Squared Reduced-Matrix Elements of Unit
Operator for J ! J′ Transition in Rare
Earth Ions

Squared reduced-matrix elements of unit operator for J! J′ transitions in rare earth

ions expressed as 4f n aSL½ �J UðkÞ�� ��4f n a0S0L0½ �J 0� ��� ��2 commonly used in laser mate-
rials are given in this appendix, which the intermediate coupling has been taken into

account and the following relation is assumed 4f n aSL½ �J UðkÞ�� ��4f n a0S0L0½ �J 0� ��� ��2¼
4f nhj a0S0L0½ �J 0 UðkÞ�� ��4f n aSL½ �Jij2. These data are cited from the book published by

A.A. Kaminskii: “Laser Crystals, their Physics and Properties. Heidelberg:
Springer-Verlag, 1981” and “Crystalline Lasers: Physical Processes and Operating
Schemes. Boca Raton: CRC Press, 1996”.

Pr3+:

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
3H5

3H4 2050 0.1096 0.2035 0.6106
3H5 2200 0.1080 0.2328 0.6421

3H6
3H4 4250 0.0002 0.0322 0.1407

3F2
3H6 700 0 0.0167 0.3040
3H5 2900 0 0.2978 0.6597
3H4 4950 0.5079 0.4048 0.1196

3F3
3F2 1380 0.0212 0.0508 0
3H6 2100 0 0.3182 0.9460
3H5 4300 0.6285 0.3468 0
3H4 6350 0.0658 0.3487 0.7002

3F4
3F3 450 0.0262 0.0735 0.013
3F2 1850 0.0015 0.0027 0.0948
3H6 2550 0.6330 0.6805 0.5165
3H5 4750 0.0368 0.3371 0.5278
3H4 6800 0.0162 0.0528 0.4901

(continued)
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

1G4
3F4 3050 0.0683 0.1203 0.2844
3F3 3500 0.0026 0.0031 0.0452
3F2 4900 0.0002 0.0138 0.0032
3H6 5600 0.1927 0.1905 0.1865
3H5 7800 0.0307 0.0715 0.3344
3H4 9850 0.0019 0.0044 0.0119

1D2
1G4 6950 0.3865 0.0493 0.0844
3F4 10,000 0.5144 0.0004 0.0147
3F3 14,950 0 0.0009 0.0025
3F2 16,300 0 0.0050 0.0301
3H6 17,000 0.0036 0.0132 0.0046
3H5 21,250 0.0081 0.0447 0.0203
3H4 16,800 0.0200 0.0165 0.0493

3P0
1D2 3900 0.0134 0 0
1G4 10,800 0 0.0425 0
3F4 13,850 0 0.1213 0
3F3 14,350 0 0 0
3F2 15,700 0.2943 0 0
3H6 16,400 0 0 0.0726
3H5 18,600 0 0 0
3H4 20,650 0 0.1713 0

3P1
3P0 600 0 0 0
1D2 4500 0.0749 0 0
1G4 11,400 0 0.0605 0
3F4 14,450 0 0.2852 0
3F3 14,950 0.5714 0.1964 0
3F2 16,300 0.2698 0 0
3H6 17,000 0 0 0.1246
3H5 19,200 0 0.2857 0.0893
3H4 21,250 0 0.1721 0

1I6
3H4 21,250 0.0081 0.0447 0.0203

3P2
1I6 1250 0 0.0257 0.1405
3P1 1250 0.4232 0 0
3P0 1850 0.1929 0 0
1D2 5700 0.0011 0.0718 0
1G4 12,650 0.5640 0.0341 0.0184
3F4 15,700 0.5233 0.1170 0.0072
3F3 16,150 0.2584 0.3082 0
3F2 17,550 0.0323 0.3001 0
3H6 18,250 0 0.5010 0.0544
3H5 20,450 0 0.1888 0.1316
3H4 22,500 6 � 10−5 0.0362 0.1373

1S0
3H4 46,750 0 0.0064 0
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Nd3+:

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
4I11/2

4I9/2 1850 0.0195 0.1073 1.1653
4I13/2

4I11/2 2000 0.0256 0.1353 1.2379
4I9/2 3850 0.0001 0.0136 0.4558

4I15/2
4I13/2 2100 0.0196 0.1189 1.4511
4I11/2 4100 0 0.0109 0.4184
4I9/2 5950 0 0.0001 0.0453

4F3/2
4I15/2 5400 0 0 0.0288
4I13/2 7500 0 0 0.2085
4I11/2 9500 0 0.1136 0.4104
4I9/2 11,350 0 0.2293 0.0548

4F5/2
4F3/2 1000 0.0795 0.0523 0
4I15/2 6400 0 0 0.2309
4I13/2 8500 0 0.1805 0.4025
4I11/2 10,500 0 0.1681 0.0364
4I9/2 12,350 0.0010 0.2371 0.3972

2H(2)9/2
4F5/2 100 0.0065 0.0315 0.0050
4F3/2 1100 0 0.0144 0.0217
4I15/2 6500 0 0.2120 0.0765
4I13/2 8600 0.0387 0.0061 0.1155
4I11/2 10,600 0.0028 0.0004 0.0246
4I9/2 12,450 0.0092 0.0080 0.1155

4F7/2
2H(2)9/2 1050 0.0059 0.0342 0.0036
4F5/2 1150 0.0674 0.0547 0.0902
4F3/2 2150 0.0066 0.0792 0
4I15/2 7550 0 0.1545 0.6209
4I13/2 9650 0 0.3282 0.0001
4I11/2 11,650 0.0006 0.2373 0.3094
4I9/2 13,500 0.0010 0.0423 0.4246

4S3/2
4F7/2 – 0 0.0004 0
2H(2)9/2 1050 0 0.0044 0.0002
4F5/2 1150 0 0.0006 0
4F3/2 2150 0.0004 0 0
4I15/2 7550 0 0 0.3302
4I13/2 9650 0 0 0.3307
4I11/2 11,650 0 0 0.2033
4I9/2 13,500 0 0.0027 0.2352

(continued)
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

4F9/2
4S3/2 1150 0 0.0026 00013
4F7/2 1150 0.1473 0.0076 0.1040
2H(2)9/2 2200 0.0486 0.0026 0.0056
4F5/2 2300 0.0109 0.0504 0.1082
4F3/2 3300 0 0.0048 0.1137
4I15/2 8700 0 0.0050 0.4668
4I13/2 10,800 0.0035 0.2188 0.5165
4I11/2 12,800 0.0001 0.0345 0.3678
4I9/2 14,650 0.0009 0.0092 0.0417

2H(2)11/2
4F9/2 1150 0.0892 0.0248 0.0910
4S3/2 2300 0 0.0568 0.0017
4F7/2 2300 0.0950 0.0929 0.0760
2H(2)9/2 3350 0.0676 0.0039 0.2229
4F5/2 3450 0 0.0029 0.0236
4F3/2 4450 0 0.0002 0.0081
4I15/2 9850 0.1311 0.0695 0
4I13/2 11,950 0.0045 0.0172 0.0028
4I11/2 13,950 0.0043 0.0093 0.0063
4I9/2 15,800 0.0001 0.0027 0.0104

4G5/2
2H(2)11/2 1400 0 0.0003 0.0146
4F9/2 2550 0.0025 0.0064 0.1338
4S3/2 3700 0.0009 0.1771 0
4F7/2 3700 0.0339 0.0612 01267
2H(2)9/2 4750 0.0010 0.0138 0.0017
4F5/2 4850 0.2681 0.1292 0
4F3/2 5850 0.4830 0.0444 0
4I15/2 11,250 0 0 0.0968
4I13/2 13,350 0 0.0349 0.0472
4I11/2 15,350 0 0.2892 0.0104
4I9/2 17,200 0.8979 0.4093 0.0359

2G(1)7/2
4G5/2 – 0.0002 0.1493 0.0874
2H(2)11/2 1400 0.0066 0 0.3467
4F9/2 2550 0.0264 0.0520 0.2705
4S3/2 3700 0.0008 0.0834 0
4F7/2 3700 0.0389 0.1018 0.1636
2H(2)9/2 4750 0.0076 0.0302 0.1822
4F5/2 4850 0.2683 0.0069 0.0825
4F3/2 5850 0.0817 0.0449 0
4I15/2 11,250 0 0.0017 0.1048
4I13/2 13,350 0 0.1025 0.0383
4I11/2 13,530 0.4416 0.1844 0.0484
4I9/2 17,200 0.0757 0.1848 0.0314

(continued)
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

2K13/2
2G(1)7/2 1550 0 0.6615 0.0013
4G5/2 1550 0 0.0019 0.0081
2H(2)11/2 2950 0.0014 0.0043 0.4823
4F9/2 4100 0.0437 0.0042 0.2821
4S3/2 5250 0 0 0.0007
4F7/2 5250 0.1407 0.0653 0.0091
2H(2)9/2 6300 0.1201 0.0061 1.1455
4F5/2 6400 0 0.0028 0.0049
4F3/2 7400 0 0 0.0073
4I15/2 12,800 0 0.0010 0.0068
4I13/2 14,900 0.0034 0.0002 0.0025
4I11/2 16,900 0.0002 0 0.0171
4I9/2 18,750 0.0069 0.0002 0.0312

4G7/2
2K13/2 250 0 0.5688 0.0014
2G(1)7/2 1800 0.0575 0.0005 0.0377
4G5/2 1800 0 0.2246 0.0053
2H(2)11/2 3200 0.0016 0.0208 0.1166
4F9/2 4350 0.0006 0.0089 0.0074
4S3/2 5500 0.0021 0.1929 0
4F7/2 5500 0.1641 0.0671 0.0031
2H(2)9/2 6550 0.0518 0.0503 0.3898
4F5/2 6650 0.2359 0.0015 0.1124
4F3/2 7650 0.0983 0.0584 0
4I15/2 13,050 0 0.0270 0.0027
4I13/2 15,150 0 0.2296 0.0576
4I11/2 17,150 0.5314 0.0959 0.0120
4I9/2 19,000 0.0550 0.1571 0.0553

4G9/2
4G7/2 450 0.0401 0.1400 0.1343
2K13/2 700 0.0195 0.0402 0.1080
2G(1)7/2 2250 0.0195 0.2246 0.0053
4G5/2 2250 0 0.10676 0.2531
2H(2)11/2 3650 0.0025 0.0327 0.2089
4F9/2 4800 0.1298 0.1604 0.0272
4S3/2 5950 0 0.2010 0.0009
4F7/2 5950 0.5747 0 0.0894
2H(2)9/2 7000 0.0381 0.0485 0.0909
4F5/2 7100 0.1987 0.1060 0.0016
4F3/2 8100 0 0.0610 0.1492
4I15/2 13,500 0 0.1580 0.2346
4I13/2 15,600 0.9950 0.3890 0.0123
4I11/2 17,600 0.1447 0.3577 0.0552
4I9/2 19,450 0.0046 0.0609 0.0406
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

2K15/2
4G9/2 1450 0 0.1135 0.0228
4G7/2 1900 0 0.0200 0.0025
2K13/2 2150 0.0068 0.4290 0.0221
2G(1)7/2 3700 0 0.0354 0.0128
4G5/2 3700 0 0 0.0053
2H(2)11/2 5100 0.1511 0.0014 1.5109
4F9/2 6250 0 0.0003 0.2020
4S3/2 7400 0 0 0.0028
4F7/2 7400 0 0 0.0084
2H(2)9/2 8450 0 0.4724 0.4238
4F5/2 8550 0 0 0.0050
4F3/2 9550 0 0 0.0097
4I15/2 14,950 0.0112 0.0002 0.0243
4I13/2 17,050 0.0004 0.0003 0.0186
4I11/2 19,050 0.0020 0.0003 0.0034
4I9/2 20,900 0 0.0052 0.0143

2G(1)9/2
2K15/2 150 0 0.9742 0.0182
4G9/2 1600 0.0018 0.0351 0.1866
4G7/2 2050 0.0147 0.0578 0.0231
2K13/2 2300 0.0147 0.0888 0.0543
2G(1)7/2 3850 0.0050 0.0631 0.0298
4G5/2 3850 0.0001 0.0282 0.0308
2H(2)11/2 5250 0.0562 0.0344 0.5917
4F9/2 6400 0.1026 0.0088 0.3021
4S3/2 7550 0 0.0800 0
4F7/2 7550 0.1218 0.0127 0.0453
2H(2)9/2 8600 0.0015 0.0009 0.1452
4F5/2 8700 0.0416 0.0353 0.0057
4F3/2 9700 0 0.0190 0.0265
4I15/2 15,100 0 0.1424 0.0044
4I13/2 17,200 0.2854 0.0275 0.0727
4I11/2 19,200 0.0238 0.0434 0.0452
4I9/2 21,050 0.0010 0.0148 0.0139
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

2D(1)3/2
2G(1)9/2 100 0 0.0089 0.0311
2K15/2 250 0 0 0.3531
4G9/2 1700 0 0.0029 0.0262
4G7/2 2150 0.0216 0.0477 0
2K13/2 2400 0 0 0.0788
2G(1)7/2 3950 0.0087 0.0839 0
4G5/2 3950 0.0003 0.0038 0
2H(2)11/2 5350 0 0.1148 0.1804
4F9/2 6500 0 0.0003 0.0156
4S3/2 7650 0.0068 0 0
4F7/2 7550 0.0018 0.0003 0
2H(2)9/2 8750 0 0.0255 0.0960
4F5/2 8800 0.0041 0. 0
4F3/2 9800 0.0046 0. 0
4I15/2 15,200 0 0 0.0081
4I13/2 17,300 0 0.0016 0.0325
4I11/2 19,300 0.0238 0.0434 0.0452
4I9/2 21,150 0 0.0189 0.0002

4G11/2
2D(1)3/2 300 0 0.0312 0.0003
2G(1)9/2 400 0.0997 0.0104 0.3721
2K15/2 550 0.0094 0.0168 0.0919
4G9/2 2000 0.0444 0.5128 0.1365
4G7/2 2450 0.0028 0.0283 0.3827
2K13/2 2700 0.0002 0.0084 0.0232
2G(1)7/2 4250 0.0107 0.1266 0.0040
4G5/2 4250 0 0.0091 0.0930
2H(2)11/2 5650 0.0010 0.0843 0.0111
4F9/2 6800 0.9477 0.2103 0.0398
4S3/2 7950 0 0.3242 0.0005
4F7/2 7950 0.1736 0.1640 0.1418
2H(2)9/2 9000 0.1747 0 0.0033
4F5/2 9100 0 0.0618 0.1959
4F3/2 10,100 0 0.0015 0.0995
4I15/2 15,500 1.5282 0.8891 0.1600
4I13/2 17,600 0.1282 0.3502 0.1608
4I11/2 19,600 00044 0.0645 0.0563
4I9/2 21,450 0 0.0053 0.0080
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

2P1/2
4G11/2 1500 0 0 0.0001
2D(1)3/2 1850 0.0349 0 0
2G(1)9/2 1950 0 0.0002 0
2K15/2 2100 0 0 0
4G9/2 3550 0 0.0010 0
4G7/2 4000 0 0.0029 0
2K13/2 4250 0 0 0.1761
2G(1)7/2 5800 0 0.0096 0
4G5/2 5800 0.0327 0 0
2H(2)11/2 7200 0 0 0.1628
4F9/2 8350 0 0.0034 0
4S3/2 9500 0.0167 0 0
4F7/2 9500 0 0.0183 0.1418
2H(2)9/2 10,550 0 0.0874 0
4F5/2 10,650 0.0093 0 0
4F3/2 11,650 0.0128 0 0
4I15/2 17,050 0 0 0
4I13/2 19,150 0 0 0
4I11/2 21,150 0 0 0.0003
4I9/2 23,000 0 0.0367 0

2D(1)5/2
2P1/2 750 0.0300 0 0
4G11/2 2300 0 0.0345 0.0008
2D(1)3/2 2600 0.2011 0.0030 0
2G(1)9/2 2700 0.0383 0.1987 0.0186
2K15/2 2850 0 0 0.4977
4G9/2 4300 0.0002 0.0055 0.0052
4G7/2 4750 0.0004 0.0552 0.0671
2K13/2 5000 0 0.0040 0.1766
2G(1)7/2 6550 0.0089 0.0681 0.1674
4G5/2 6550 0.0016 0.0007 0
2H(2)11/2 7950 0 0.2650 0.0152
4F9/2 9100 0.0006 0.0094 0.0114
4S3/2 10,250 0.0096 0 0
4F7/2 10,250 0.0003 0.0188 0.0061
2H(2)9/2 11,300 0.0125 0.2248 0.0736
4F5/2 11,400 0.0011 0.0005 0
4F3/2 12,400 0.0015 0.0015 0
4I15/2 17,800 0 0 0.0003
4I13/2 19,900 0 0.0052 0.0170
4I11/2 21,900 0 0 0.0025
4I9/2 23,750 0 0.0002 0.0021
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

2P3/2
2D(1)5/2 2350 0.0050 0.0001 0
2P1/2 3100 0.0026 0 0
4G11/2 4650 0 0.0031 0.0001
2D(1)3/2 4950 0.0058 0 0
2G(1)9/2 5050 0 0.0910 0.1466
2K15/2 5200 0 0 0.0043
4G9/2 6650 0 0.0602 0.0590
4G7/2 7100 0.0045 0.0086 0
2K13/2 7350 0 0 0.2481
2G(1)7/2 7850 0.0001 0 0
4G5/2 7850 0.0066 0 0
2H(2)11/2 10,300 0 0.0031 0.0125
4F9/2 11,450 0 0.0596 0.0539
4S3/2 12,600 0.0073 0 0
4F7/2 12,600 0.0009 0.0003 0
2H(2)9/2 13,650 0 0.0130 0.0732
4F5/2 13,750 0.0023 0.0044 0
4F3/2 14,750 0.0031 0 0
4I15/2 20,150 0 0 0.0029
4I13/2 22,250 0 0 0.0090
4I11/2 24,250 0 0.0172 0.0008
4I9/2 26,100 0 0.0014 0.0008

4D3/2
2P3/2 2100 0.0118 0. 0
2D(1)5/2 4450 0.0268 0.0072 0
2P1/2 5200 0.1086 0 0
4G11/2 6750 0 0.0039 0.2047
2D(1)3/2 7050 0 0 0
2G(1)9/2 7150 0 0 0.0346
2K15/2 7300 0 0 0.0014
4G9/2 8750 0 0.0002 0.0904
4G7/2 9200 0.1363 0.0125 0
2K13/2 9450 0 0 0.0024
2G(1)7/2 11,000 0.2824 0.0173 0
4G5/2 11,000 0.1786 0.0007 0
2H(2)11/2 12,400 0 0.0427 0.0135
4F9/2 13,550 0 0.2023 0.0007
4S3/2 14,700 0.2297 0 0
4F7/2 14,700 0.2326 0.0657 0
2H(2)9/2 15,750 0 0.0209 0.0033
4F5/2 15,850 0.0595 0.2095 0
4F3/2 16,850 0.1430 0 0
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Sm3+

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
6H7/2

6H5/2 1100 0.2085 0.1986 0.0822
6H9/2

6H7/2 1200 0.2983 0.1652 0.0104
6H5/2 2300 0.0221 0.1340 0.3117

6H11/2
6H9/2 1300 0.3451 0.2226 5 � 10−5

6H7/2 2500 0.0336 0.1760 0.2588
6H5/2 3600 0 0.0262 0.2678

6H13/2
6H11/2 1500 0.3412 0.3450 0.1129
6H9/2 2800 0.0280 0.1696 0.3968
6H7/2 4000 0 0.0276 0.2768
6H5/2 5100 0 0.0011 0.0605

6F1/2
6H13/2 1100 0 0 0.1026
6H11/2 2600 0 0 0.3343
6H9/2 3900 0 0.1485 0
6H7/2 5100 0 0.1395 0
6H5/2 6200 0.1947 0 0

(continued)

(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

4I15/2 22,250 0 0 0.0091
4I13/2 24,350 0 0 0.0245
4I11/2 26,350 0 0.2942 0.0084
4I9/2 28,200 0 0.1959 0.0169

4D5/2
4I9/2 28,350 0.0001 0.0567 0.0275

2I11/2
4I9/2 28,500 0.0049 0.0146 0.0034

4D1/2
4I9/2 28,750 0 0.2584 0

2L15/2
4I9/2 29,150 0 0.0248 0.0097

2I13/2
4I9/2 29,850 0.0001 0.0013 0.0017

4D7/2
4I9/2 30,400 0 0.0036 0.0080

2L17/2
4I9/2 30,600 0 0.0010 0.0013

2H(1)9/2
4I9/2 32,450 0.0001 0.0085 0

2D(2)3/2
4I9/2 33,350 0 0.0112 0.0011

2H(1)11/2
4I9/2 33,800 0.0001 0.0001 0.0002

2D(2)5/2
4I9/2 34,350 0.0007 0.0006 0.0034

2F(2)5/2
4I9/2 38,350 0.0021 0.0033 0

2F(2)7/2
4I9/2 39,800 0 0.0004 0.0007

2G(2)9/2
4I9/2 47,550 0 0.0015 0.0001
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

6F3/2
6F1/2 300 0.0182 0 0
6H13/2 1400 0 0 0.4017
6H11/2 2900 0 0.2100 0.0279
6H9/2 4200 0 0.1183 0.3742
6H7/2 5400 0.2443 0.1164 0
6H5/2 6500 0.1427 0.1356 0

6H15/2
6F3/2 300 0 0 0.0600
6F1/2 600 0 0 0
6H13/2 1700 0.2371 0.4010 0.6819
6H11/2 3200 0.0148 0.1133 0.4900
6H9/2 4500 0 0.0104 0.1907
6H7/2 5700 0 0.0006 0.0394
6H5/2 6800 0 0 0.0031

6F5/2
6H15/2 400 0 0 0.3316
6F3/2 700 0.0239 0.0250 0
6F1/2 1000 0.0125 0 0
6H13/2 2100 0 0.2014 0.2866
6H11/2 3600 0 0.2319 0.2035
6H9/2 4900 0.3358 0.1046 0.0398
6H7/2 6100 0.1980 0.0538 0.4172
6H5/2 7200 0.0365 0.2704 0

6F7/2
6F5/2 1000 0.0393 0.0049 0.0054
6H15/2 1400 0 0.1104 0.6524
6F3/2 1700 0.0133 0.0076 0
6F1/2 2000 0 0.0227 0
6H13/2 3100 0 0.4062 5 � 10−5

6H11/2 4600 0.4617 0.0370 0.3017
6H9/2 5900 0.2140 0.1243 0.2447
6H7/2 7100 0.0391 0.2824 8 � 10−5

6H5/2 8200 0.0044 0.1151 0.3984
6F9/2

6F7/2 1000 0.0520 0.0041 0.0419
6F5/2 2000 0.0130 0.0335 0.0347
6H15/2 2400 0 0.5734 0.7566
6F3/2 2700 0 0.0286 0.0128
6F1/2 3000 0 0.0060 0
6H13/2 4100 0.7048 0.0293 0.4178
6H11/2 5600 0.2264 0.3614 0.0092
6H9/2 6900 0.0377 0.3323 0.1687
6H7/2 8100 0.0032 0.1269 0.4513
6H5/2 9200 9 � 10−5 0.0190 0.3557
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

6F11/2
6F9/2 1400 0.0532 0.0676 0.0189
6F7/2 2400 0.0065 0.0456 0.0325
6F5/2 3400 0 0.0188 0.0500
6H15/2 3800 1.0105 0.7661 0.3489
6F3/2 4100 0 0.0030 0.0499
6F1/2 4400 0 0 0.0313
6H13/2 5500 0.1581 0.5983 0.7011
6H11/2 7000 0.0190 0.2577 0.7461
6H9/2 8300 0.0014 0.0674 0.5189
6H7/2 9500 4 � 10−5 0.0102 0.2322
6H5/2 10,600 0 0.0006 0.0527

Eu3+:

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
7F1

7F0 400 0 0 0
7F2

7F1 600 0.0518 0 0
7F0 1000 0.1372 0 0

7F3
7F2 900 0.1852 0.2121 0
7F1 1500 0.2087 0.1266 0
7F0 1900 0 0 0

7F4
7F3 1000 0.3833 0.1337 0.1554
7F2 1900 0.2207 0.0066 0.0317
7F1 2500 0 0.1731 0
7F0 2900 0 0.1382 0

7F5
7F4 1000 0.5611 0.0131 0.4430
7F3 2000 0.1737 0.2522 0.3817
7F2 2900 0 0.3150 0.2088
7F1 3500 0 0.1190 0.0544
7F0 3900 0 0 0

7F6
7F5 1100 0.5212 0.6455 0.1217
7F4 2100 0.0846 0.5150 0.2719
7F3 3100 0 0.2306 0.4120
7F2 4000 0 0.0476 0.4696
7F1 4600 0 0 0.3765
7F0 5000 0 0 0.1442

(continued)
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

5D0
7F6 12,300 0 0 0.0005
7F5 13,400 0 0 0
7F4 14,400 0 0.0030 0
7F3 15,400 0 0 0
7F2 16,300 0.0035 0 0
7F1 16,900 0 0 0
7F0 17,300 0 0 0

5D1
5D0 1700 0 0 0
7F6 14,000 0 0 0.0006
7F5 15,100 0 0.0009 5 � 10−5

7F4 16,100 0 0.0031 0
7F3 17,100 0.0042 0.0024 0
7F2 18,000 0.0009 0 0
7F1 18,600 0.0028 0 0
7F0 19,000 0 0 0

5D2
5D1 2500 0.0105 0 0
5D0 4200 0.0112 0 0
7F6 16,500 0 2 � 10−5 0.0002
7F5 17,600 0 0.0018 2 � 10−5

7F4 18,600 0.0024 0.0002 0.0001
7F3 19,600 0.0023 0.0026 0
7F2 20,500 0.0018 0.0015 0
7F1 21,100 0.0002 0 0
7F0 21,500 0.0009 0 0

5D3
5D2 2400 0.0300 0.0172 0
5D1 4900 0.0136 0.0074 0
5D0 6600 0 0 0
7F6 18,900 0 7 � 10−5 2 � 10−5

7F5 20,000 0.0002 0.0014 2 � 10−6

7F4 21,000 0.0036 0.0004 0.0002
7F3 22,000 0.0009 0.0004 0.0002
7F2 22,900 0.0003 0.0021 0
7F1 23,500 0.0005 0.0012 0
7F0 23,900 0 0 0
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Tb3+:

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
7F5

7F6 2100 0.5122 0.6426 0.1181
7F4

7F5 1400 0.5415 0.0122 0.4360
7F6 3500 0.0868 0.5140 0.2667

7F3
7F4 900 0.3474 0.1288 0.1450
7F5 2300 0.1621 0.2358 0.3512
7F6 4400 0 0.2142 0.3804

7F2
7F3 700 0.1685 0.1936 0
7F4 1600 0.2211 0.0060 0.0326
7F5 3000 0 0.3129 0.2077
7F6 5100 0 0.0479 0.4676

7F1
7F2 500 0.0512 0 0
7F3 1200 0.1928 0.1204 0
7F4 2100 0 0.1707 0
7F5 3500 0 0.1175 0.0544
7F6 5600 0 0 0.3738

7F0
7F1 200 0 0 0
7F2 700 0.1388 0 0
7F3 1400 0 0 0
7F4 2300 0 0.1386 0
7F5 3700 0 0 0
7F6 5800 0 0 0.1440

5D4
7F0 14,700 0 0.0022 0
7F1 14,900 0 0.0025 0
7F2 15,400 0.0016 0.0004 8 � 10−5

7F3 16,100 0.0137 0.0010 0.0007
7F4 17,000 0.0003 0.0019 0.0015
7F5 18,400 0.0139 0.0010 0.0026
7F6 20,500 0.0007 0.0013 0.0011

5D3
5D4 6300 0.0501 0.0274 0.0063
7F0 21,000 0 0 0
7F1 21,200 0.0017 0.0030 0
7F2 21,700 0.0016 0.0030 0
7F3 22,400 0.0005 0.0111 0.0002
7F4 23,300 0.0073 0.0002 0.0003
7F5 24,700 0.0008 0.0028 0.0016
7F6 26,800 0 0.0006 0.0014
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Dy3+:

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
6H13/2

6H15/2 3400 0.2286 0.3879 0.6525
6H11/2

6H13/2 2250 0.2464 0.4412 0.0359
6H15/2 5650 0.0673 0.0409 0.5891

6H9/2
6H11/2 1900 0.3280 0.1702 0.0077
6H13/2 4150 0.0276 0.1647 0.3766
6H15/2 7550 0 0.0157 0.2003

6F11/2
6H9/2 – 0.0039 0.1009 0.4608
6H11/2 1900 0.0022 0.1907 0.7845
6H13/2 4150 0.2274 0.4342 0.7254
6H15/2 7550 0.8749 0.8360 0.1909

6H7/2
6F11/2 1350 0.0006 0.0256 0.1374
6H9/2 1350 0.2974 0.1574 0.0095
6H11/2 3250 0.0309 0.1466 0.3047
6H13/2 5500 0 0.0265 0.2709
6H15/2 8900 0 0.0007 0.0415

6F9/2
6H7/2 – 0.0025 0.1193 0.4088
6F11/2 1350 0.0138 0.0162 0.0151
6H9/2 1350 0.0356 0.3155 0.1816
6H11/2 3250 0.2382 0.3663 0.0121
6H13/2 5500 0.6199 0.0246 0.3811
6H15/2 8900 0 0.5628 0.6747

6H5/2
6F9/2 1100 6 � 10−5 0.0180 0.3172
6H7/2 1100 0.2047 0.1871 0.0784
6F11/2 2450 0 0.0023 0.0183
6H9/2 2450 0.0228 0.1319 0.2970
6H11/2 4350 0 0.0225 0.2812
6H13/2 6600 0 0.0010 0.0606
6H15/2 10,000 0 0 0.0032

6F7/2
6H5/2 800 0.0031 0.1256 0.3907
6F9/2 1900 0.0450 0.0049 0.0481
6H7/2 1900 0.0430 0.2747 0
6F11/2 3250 0.0333 0.0272 0.0792
6H9/2 3250 0.2182 0.1272 0.2475
6H11/2 5150 0.4029 0.0527 0.2756
6H13/2 7400 0 0.4138 0
6H15/2 10,800 0 0.1167 0.6619
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

6F5/2
6F7/2 1400 0.0395 0.0061 0.0077
6H5/2 2200 0.0353 0.2690 0
6F9/2 3300 0.0133 0.0307 0.0288
6H7/2 3300 0.1940 0.0542 0.3982
6F11/2 4650 0 0.0455 0.0834
6H9/2 4650 0.3313 0.1045 0.0425
6H11/2 6550 0 0.1953 0.1690
6H13/2 8800 0 0.1998 0.2747
6H15/2 12,200 0 0 0.3385

6F3/2
6F5/2 800 0.0222 0.0273 0
6F7/2 2200 0.0148 0.0071 0
6H5/2 3000 0.1318 0.1279 0
6F9/2 4100 0 0.0312 0.0092
6H7/2 4100 0.0430 0.2747 0
6F11/2 5450 0 0.0164 0.0302
6H9/2 5450 0 0.1228 0.3315
6H11/2 7350 0 0.1852 0.0340
6H13/2 9600 0 0 0.3776
6H15/2 13,000 0 0 0.0606

6F1/2
6F3/2 400 0.0152 0 0
6F5/2 1200 0.0113 0 0
6F7/2 2600 0 0.0260 0
6H5/2 3400 0.1902 0 0
6F9/2 4500 0 0.0072 0
6H7/2 4500 0 0.1330 0
6F11/2 5850 0 0 0.0048
6H9/2 5850 0 0.1460 0
6H11/2 7750 0 0 0.3336
6H13/2 10,000 0 0 0.0991
6H15/2 13,400 0 0 0

Ho3+:

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
5I7

5I8 5050 0.0249 0.1344 1.5210
5I6

5I7 3400 0.0319 0.1336 0.9308
5I8 8550 0.0083 0.0383 0.6917

5I5
5I6 2250 0.0438 0.1705 0.5729
5I7 6050 0.0027 0.0226 0.8887
5I8 11,150 0 0.0098 0.0936
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

5I4
5I5 2050 0.0313 0.1238 0.9100
5I6 4600 0.0022 0.0281 0.6640
5I7 8100 0 0.0033 0.1568
5I8 13,150 0 0 0.0077

5F5
5I4 2250 0.0001 0.0059 0.0039
5I5 4300 0.0068 0.0271 0.1649
5I6 6850 0.0102 0.1213 0.4995
5I7 10,350 0.0177 0.3298 0.4340
5I8 15,400 0 0.4277 0.5685

5S2
5F5 3000 0 0.0110 0.0036
5I4 5250 0.0014 0.0262 0.2795
5I5 7300 0 0.0043 0.1062
5I6 9850 0 0.0206 0.1540
5I7 13,350 0 0 0.4096
5I8 18,450 0 0 0.2270

5F4
5S2 – 0.0002 0.0147 0.0052
5F5 3000 0.1944 0.0923 0.0080
5I4 5250 0.0001 0.0234 0.2587
5I5 7300 0.0018 0.1314 0.4655
5I6 9850 0.0012 0.2580 0.1697
5I7 13,350 0 0.1988 0.0324
5I8 18,450 0 0.2402 0.7079

5F3
5F4 2100 0.0971 0.0289 0.0957
5S2 2100 0.0061 0.0009 0
5F5 5100 0.0388 0.0820 0.0873
5I4 7350 0.0003 0.0980 0.3964
5I5 9400 0 0.2154 0.0173
5I6 11,950 0 0.0904 0.2170
5I7 15,450 0 0.2483 0.2275
5I8 20,550 0 0 0.3464

5F2
5F3 450 0.0459 0.0002 0
5F4 2550 0.0067 0.0268 0.0270
5S2 2550 0.0016 0.0028 0
5F5 5600 0 0.0082 0.1172
5I4 7950 0.0004 0.1810 0.0273
5I5 9850 0 0.0427 0.3125
5I6 12,450 0 0.1287 0.1532
5I7 15,590 0 0 0.1760
5I8 21,000 0 0 0.1918
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

3K8
5F2 250 0 0 0.0005
5F3 750 0 0 0.0062
5F4 2850 0 0.0079 0.0004
5S2 2850 0 0 0.0002
5F5 5850 0 0.0263 0.0195
5I4 8100 0 0.0045 0.0012
5I5 10,150 0 0.0004 0.0041
5I6 12,700 0.0059 0.0041 0.0138
5I7 16,200 0.0019 0.0046 0.0406
5I8 21,250 0.0209 0.03,294 0.1579

5G6
3K8 850 0.0005 0.0027 0.2616
5F2 1150 0 0.0257 0.1144
5F3 1600 0 0.0666 0.1595
5F4 3700 0.2551 0.2392 0.1347
5S2 3700 0 0.3250 0.0031
5F5 6700 1.1528 0.3576 0.0329
5I4 8950 0.0005 0.0013 2 � 10−5

5I5 11,000 0.0165 0.0307 0.0133
5I6 13,500 0.0093 0.0837 0.1094
5I7 17,050 0.1523 0.04,374 0.2588
5I8 22,150 1.5180 0.8548 0.1416

5F1
5G6 – 0 0 0.0530
3K8 850 0 0 0
5F2 1150 0.0496 0 0
5F3 1600 0.0080 0.0604 0
5F4 3700 0 0.0470 0
5S2 3700 0.0096 0 0
5F5 6700 0 3 � 10−5 0.1139
5I4 8950 0 0.1442 0
5I5 11,000 0 0.14042 0.1710
5I6 13,550 0 0 0.2398
5I7 17,050 0 0 0.0570
5I8 22,150 0 0 0

5G5
5F1 1750 0 0.0078 0.0574
5G6 1750 0.0617 0.2595 00.617
3K8 2650 0 0.0093 0.0007
5F2 2900 0 0.1292 0.0022
5F3 3500 0.1927 0.1029 00.319
5F4 5450 0.2984 0.0216 0.1446
5S2 5450 0 0.1292 0.0018
5F5 8500 0.3540 0.0426 0.1198
5I4 10,750 10−5 0.0100 0.0427
5I5 12,750 0.0036 0.0689 0.0598
5I6 15,350 0.1374 0.1857 0.0806
5I7 18,850 0.6185 0.0308 0.1090
5I8 23,900 0 0.0548 0.1610
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

5G4
5G5 1900 0.0082 01650 0.0224
5F1 3700 0 00564 0
5G6 3700 0.0042 02045 0.2885
3K8 4550 0 00800 0.0017
5F2 4800 0.2149 00002 0.0732
5F3 5300 0.2233 00215 0.0489
5F4 7400 0.4086 01102 0.0214
5S2 7400 0.0246 02293 0.0097
5F5 10,400 0.0298 00141 0.2246
5I4 12,600 0.0154 01093 0.0545
5I5 14,700 0.2268 02775 0.0322
5I6 17,250 0.7156 00246 0.0009
5I7 20,750 0 02990 0.0653
5I8 25,800 0 0.0346 0.0348

3K7
5G4 250 0 0.0139 0.0042
5G5 2150 0.0163 00059 0.2302
5F1 3900 0 0 0.0018
5G6 3900 7 � 10−5 0.0002 0.1060
3K8 4800 0.0877 7 � 10−5 0.1252
5F2 5050 0 0 0.0104
5F3 5500 0 0.0074 0.0041
5F4 7600 0 0.0153 0.0089
5S2 7600 0 0 0.0260
5F5 10,650 0.0015 0.0113 0.0141
5I4 12,900 0 0.0007 0.0069
5I5 14,900 0.0068 0.0042 0.0312
5I6 17,500 0.0011 0.0058 0.0716
5I7 20,950 0.0056 0.0062 0.0050
5I8 26,050 0.0058 0.0046 0.0338

Er3+:

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
4I13/2

4I15/2 6500 0.0195 0.1173 1.4316
4I11/2

4I13/2 3600 0.0331 0.1708 1.0864
4I15/2 10,100 0.0282 0.0003 0.3953

4I9/2
4I11/2 2150 0.0030 0.0674 0.1271
4I13/2 5750 0.0004 0.0106 0.7162
4I15/2 12,250 0 0.1732 0.0099

4F9/2
4I9/2 2900 0.1279 0.0059 0.0281
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

4F9/2
4I11/2 5050 0.0704 0.0112 1.2839
4I13/2 8650 0.0101 0.1533 0.0714
4I15/2 15,150 0 0.5354 0.4619

4S3/2
4F9/2 3200 0 0.0003 0.0264
4I9/2 6100 0 0.0788 0.2542
4I11/2 8250 0 0.0042 0.0739
4I13/2 11,850 0 0 0.3462
4I15/2 18,350 0 0 0.2211

2H(2)11/2
4S3/2 800 0 0.1988 0.0101
4F9/2 4000 0.3629 0.0224 0.0022
4I9/2 6900 0.2077 0.0662 0.2858
4I11/2 9050 0.0357 0.1382 0.0371
4I13/2 12,650 0.0230 0.0611 0.0527
4I15/2 19,150 0.7125 0.4123 0.0925

4F7/2
2H(2)11/2 1150 0.1229 0.0153 0.4017
4S3/2 1950 0.0001 0.0058 0
4F9/2 5150 0.0121 0.0342 0.
4I9/2 8050 0.0163 0.0954 0.4277
4I11/2 10,200 0.0035 0.2648 0.1515
4I13/2 13,800 0 0.3371 0.0001
4I15/2 20,300 0 0.1468 0.6266

4F5/2
4F7/2 1650 0.0765 0.0503 0.1015
2H(2)11/2 2800 0 0.0586 0.1825
4S3/2 3600 0.0082 0.0040 0
4F9/2 6800 0.0004 0.2415 0.3575
4I9/2 9700 0.0107 0.0576 0.0102
4I11/2 11,850 0 0.0979 0.0028
4I13/2 15,450 0 0.1783 0.3429
4I15/2 21,950 0 0 0.2233

4F3/2
4F5/2 350 0.0618 0.0350 0
4F7/2 2000 0.0026 0.0584 0
2H(2)11/2 3150 0 0.0005 0.0030
4S3/2 3950 0.0260 0 0
4F9/2 7150 0 0.0040 0.0595
4I9/2 10,050 0 0.2299 0.0558
4I11/2 12,200 0 0.0927 0.4861
4I13/2 15,800 0 0 0.0345
4I15/2 22,300 0 0 0.1272

(continued)

446 Appendix D: Squared Reduced-Matrix Elements …



(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

2G(1)9/2
4F3/2 2100 0 0.0208 0.0087
4F5/2 2450 0.0124 0.0259 0.0063
4F7/2 4100 0.1058 0.0488 0.0240
2H(2)11/2 5250 0.0308 0.1828 0.0671
4S3/2 6050 0 0.0019 0.0025
4F9/2 9250 0.0055 0.0314 0.0369
4I9/2 12,150 0.0147 0.0062 0.0043
4I11/2 14,300 0.0428 0.0824 0.1128
4I13/2 17,900 0.0780 0.1194 0.3535
4I15/2 24,400 0 0.0190 0.2255

4G11/2
2G(1)9/2 2000 0.2906 0.1170 0.1328
4F3/2 4100 0 0.0234 0.0923
4F5/2 4450 0 0.0378 0.0815
4F7/2 6100 0.0877 0.1287 0.0159
2H(2)11/2 7250 0.0004 0.1539 0.0494
4S3/2 8050 0 0.1302 0.0044
4F9/2 11,250 0.4252 0.0368 0.0122
4I9/2 14,150 0.0716 0.0131 0.0235
4I11/2 16,300 0.0003 0.0496 0.0134
4I13/2 19,900 0.1013 0.2651 0.2594
4I15/2 26,400 0.9181 0.5261 0.1171

4G9/2
4G11/2 950 0.0005 0.2021 0.1639
2G(1)9/2 2950 0.0269 0 0.0452
4F3/2 5050 0 0.1750 0.1089
4F5/2 5400 0.1630 00824 0.0028
4F7/2 7050 0.6062 0.0088 0.1243
2H(2)11/2 8200 0.0218 0.3274 0.1496
4S3/2 9000 0 0.1551 0.0100
4F9/2 12,200 0.2201 0.3121 0.3765
4I9/2 15,100 0.0051 0.0042 0.0027
4I11/2 17,250 0.0894 0.1524 0.0144
4I13/2 20,850 1.0908 0.3520 0.0160
4I15/2 27,350 0 0.2415 0.1234

(continued)
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

2K15/2
4G9/2 350 0 0.0114 0.0598
4G11/2 1300 0.0965 0.0595 0.0706
2G(1)9/2 3300 0 0.7106 0.0708
4F3/2 5400 0 0 0.0001
4F5/2 5750 0 0 0.0461
4F7/2 7400 0 0.0001 0.0002
2H(2)11/2 8550 0.0977 0.0001 1.1458
4S3/2 9350 0 0 0.0032
4F9/2 12,550 0 0.0776 0.0125
4I9/2 15,450 0 0.2221 0.1003
4I11/2 17,600 0.0468 0.0018 0.2488
4I13/2 21,200 0.0001 0.0016 0.0361
4I15/2 27,700 0.0219 0.0041 0.0758

2G(1)7/2
2K15/2 150 0 0.1154 0.0026
4G9/2 500 0.0041 0.1891 0.1582
4G11/2 1450 0.0150 0.0604 0.0193
2G(1)9/2 3450 0.0145 0.0056 0.0205
4F3/2 5550 0.0941 0.0314 0
4F5/2 5900 0.3716 0.0023 0.0378
4F7/2 7550 0.1239 0.0424 0.0071
2H(2)11/2 8700 0.0019 0.0344 0.2672
4S3/2 9500 0.0445 0.1594 0
4F9/2 12,700 0.0003 0.0078 0.0128
4I9/2 15,600 0.1586 0.3607 0.2204
4I11/2 17,750 0.4934 0.2708 0.1674
4I13/2 21,350 0 0.1009 0.0512
4I15/2 27,850 0 0.0174 0.1163

2P3/2
2G(1)7/2 3700 0.0125 0.0004 0
2K15/2 3850 0 0 0.0268
4G9/2 4200 0 0.0125 0.0053
4G11/2 5150 0 0.0266 0.0107
2G(1)9/2 7150 0 0.2083 0.2591
4F3/2 9250 0.0123 0 0
4F5/2 9600 0.0173 0.0433 0
4F7/2 11,250 0.0211 0.0076 0
2H(2)11/2 12,400 0 0.0168 0.0263
4S3/2 13,200 0.0813 0 0
4F9/2 16,400 0 0.0464 0.0060
4I9/2 19,300 0 0.0461 0.0041
4I11/2 21,450 0 0.0995 0.0400
4I13/2 25,050 0 0 0.1478
4I15/2 31,550 0 0 0.0172
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

2K13/2
4I15/2 33,000 0.0032 0.0029 0.0152

4G5/2
4I15/2 33,300 0 0 0.0026

2P1/2
4I15/2 33,350 0 0 0

4G7/2
4I15/2 33,900 0 0.0334 0.0028

2D(1)5/2
4I15/2 34,700 0 0 0.0227

2H(2)9/2
4I15/2 36,450 0 0.0500 0.0001

4D5/2
4I15/2 38,450 0 0 0.0267

4D7/2
4I15/2 39,050 0 0.8919 0.0291

2I11/2
4I15/2 40,900 0.0002 0.0285 0.0034

2L17/2
4I15/2 41,600 0.0047 0.0663 0.0328

4D3/2
4I15/2 42,150 0 0 0.0126

2D(1)3/2
4I15/2 42,850 0 0 0.0002

2I13/2
4I15/2 43,600 0.0055 0.0171 0.0050

4D1/2
4I15/2 46,950 0 0 0

2H(1)9/2
4I15/2 47,750 0 0.0038 0.0001

2L15/2
4I15/2 47,750 0.0002 0.0027 0.0021

2D(2)5/2
4I15/2 48,900 0 0 0.0096

Tm3+:

2S+1LJ
2S′+1L′J′ EJJ′ (cm

−1) k = 2 k = 4 k = 6
3H4 (

3F4)
3H6 5600 0.249 0.118 0.608

3H5
3H4 (

3F4) 2500 0.011 0.48 0.004
3H6 8100 0.107 0.231 0.638

3F4 (
3H4)

3H5 4450 0.089 0.125 0.905
3H4 (

3F4) 6950 0.129 0.133 0.213
3H6 12,550 0.527 0.718 0.228

3F3
3F4 (

3H4) 1800 0.002 0.0005 0.167
3H5 6250 0.629 0.347 0
3H4 (

3F4) 8750 0.081 0.344 0.264
3H6 14,350 0 0.316 0.841

3F2
3F3 650 0.004 0.075 0
3F4 (

3H4) 2450 0.311 0.056 0.044
3H5 6900 0 0.29 0.583
3H4 (

3F4) 9400 0.287 0.163 0.074
3H6 15,000 0 0.0005 0.258

(continued)
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

1G4
3F2 6100 0.0060 0.0717 0.0417
3F3 6700 0.0105 0.0733 0.3056
3F4 (

3H4) 8500 0.0034 0.0194 0.0718
3H5 12,950 0.0738 0.0059 0.5423
3H4 (

3F4) 15,500 0.1583 0.0042 0.3783
3H6 21,050 0.0481 0.0752 0.0119

1D2
1G4 6750 0.1905 0.1722 0.0009
3F2 12,850 0.0647 0.3055 0
3F3 13,450 0.1607 0.0680 0
3F4 (

3H4) 15,250 0.5631 0.0935 0.0225
3H5 19,700 0 0.0011 0.0185
3H4 (

3F4) 22,250 0.1240 0.0116 0.2266
3H6 27,800 0 0.3079 0.0926

3P0
1D2 6900 0.0253 0 0
1G4 13,650 0 0.0525 0
3F2 19,700 0.3543 0 0
3F3 20,350 0 0 0
3F4 (

3H4) 22,150 0 0.2715 0
3H5 26,600 0 0 0
3H4 (

3F4) 29,100 0 0.0204 0
3H6 34,700 0 0 0.0757

1I6
3P0 1400 0 0 0.0190
1D2 8300 0 0.0520 0.8448
1G4 15,050 0.2128 1.2488 0.6302
3F2 21,100 0 0.0410 0.3545
3F3 21,750 0 0.0028 0.0074
3F4 (

3H4) 23,550 0.0622 0.5013 0.3921
3H5 28,000 0.0010 0.0021 0.0056
3H4 (

3F4) 30,500 0.0669 0.3112 0.0992
3H6 36,100 0.0107 0.0392 0.0136

3P1
1I6 – 0 0 0.0011
3P0 1400 0 0 0
1D2 8300 0.4444 0 0
1G4 15,050 0 0.0050 0
3F2 21,100 0.1370 0 0
3F3 21,750 0.5714 0.1964 0
3F4 (

3H4) 23,550 0 0.1074 0
3H5 28,000 0 0.2857 0.0893
3H4 (

3F4) 30,500 0 0.4055 0
3H6 36,100 0 0 0.1239
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(continued)
2S+1LJ

2S′+1L′J′ EJJ′ (cm
−1) k = 2 k = 4 k = 6

3P2
3P1 1800 0.1822 0 0
1I6 1800 0 0.0981 0.6808
3P0 3200 0.1247 0 0
1D2 10,100 0.0004 0.1560 0
1G4 16,850 0.5964 0.0009 0.1055
3F2 22,900 0.0045 0.0433 0
3F3 23,550 0.1445 0.2343 0
3F4 (

3H4) 25,350 0.1359 0.0858 2 � 10−5

3H5 29,800 0 0.1979 0.1895
3H4 (

3F4) 32,300 0.2811 0.0096 0.0064
3H6 37,900 0 0.2713 0.0228
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Appendix E
3jm Factors for Some Group Chains

For the convenience of the table list, the symbol of point group irreducible repre-
sentation adopted the subscript of Bathe symbol (i.e. C1 ) 1, C2 ) 2, C3 ) 3,…).
The irreducible representations of group G and its subgroup H denoted by ki and li,
respectively, then the 3jm factor of group chain G � H expressed as follows

k1 k2 k3
l1 l2 l3 s a1 a2 a3

where ai denotes the multiple decomposition of irreducible representation, s denotes
the multiple coupling of subgroup H. As an example, some of the 3jm factors of
SO3 � O group chain will be used to illustrate the meaning of the following table.
In the table of group chain SO3 � O it can be found the black numbers 3 5/2 3/2
which characterize the irreducible representations of SO3 group and below this line
there is a line of

4 7 8 0 000þ þ ffiffiffi
3

p
=

ffiffiffiffiffiffiffi
2:7

p

It means that

3 5=2 3=2
4 7 8

� �
0
¼ þ

ffiffiffi
3

p
=

ffiffiffiffiffiffiffiffiffiffiffi
2� 7

p

In this 3jm factor the irreducible representations of O group are 1, ~12,
3
2 of Butler

symbol and C4, C7, C8 of Bethe while the symbol in this book is simply 4, 7, 8. The
multiple coupling of subgroup is s = 0 and the multiple decomposition of irre-
ducible representation a1 = 0, a2 = 0, a3 = 0 and the sign change brought by the
column permutation are given after the multiple decomposition symbol, the column
permutation + and − express that the column exchange the sign of the 3jm factor
does not change and change, respectively. Particular attention should be paid to the
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points between the numbers of the numerical value of the 3jm factor. It expresses
the meaning of multiplication, rather than the decimal point.

The next two lines are

3 5=2 3=2
5 8 8 0 0 0 0þ

� 3 5=2 3=2
C5 C8 C8

� �SO3

0O
¼ 5

2
ffiffiffiffiffi
21

p

with

3 5=2 3=2
5 8 8 0 0 0 0�

� 3 5=2 3=2
C5 C8 C8

� �SO3

1O
¼ �1

2
ffiffiffiffiffi
21

p

For the situation of absence of multiple coupling of subgroup or multiple
decomposition of irreducible representation, the corresponding marks will not
appear in the table.

The 3jm factor has two kinds of symmetry, that is, the column permutation
symmetry and the complex conjugate symmetry. After two column permutation
operation, the value of 3jm factor remains unchanged; for example, the 3jm factor
of D2 � C2 group chain

5 5 1
4 3 1

� �D2

C2

¼ � 1ffiffiffi
2

p

After column permutation one have

5 1 5
4 1 3

� �
¼ 1 5 5

1 3 4

� �
¼ 5 5 1

3 4 1

� �
¼ 1ffiffiffi

2
p

If the complex conjugate will bring changes of the sign of 3jm factor then an
asterisk will be added to the upper right corner of it, as an example

5 5 1
4 3 1

� ��
¼ � 1ffiffiffi

2
p

� ��
¼ � 5 5 1

3 4 1

� �

This result is the same as the results of the permutation. For the 3jm factor of
D3 � C3 group chain

6 3 4

6 3 5

� �
¼ þ 5 3 4

6 2 4

� ��
¼ 1ffiffiffi

2
p

� ��
¼ 1ffiffiffi

2
p

6 3 4

6 2 4

� �
¼ � 5 3 4

6 3 5

� ��
¼ � iffiffiffi

2
p

� ��
¼ iffiffiffi

2
p
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Some of the 3jm Factor of SO3 O Group Chain
2 3/2 3/2 8 8 1 0 100+ 4 5. 11 . 31

3 8 8 0 000+ 8 8 1 0 110+ 2 7 3 3.5. 11 . 31

5 8 8 0 000+ 

52

53 8 8 4 0 000- 0 
5 8 8 1 000- 0 8 8 4 0 100- 4 11 . 31

9/2 9/2 2 8 8 4 0 110- 0 

8 6 3 0 000- 1 5 11 8 8 4 1 000- 0 
8 6 3 0 100- 4 7 5 3. 11 8 8 4 1 100- 1 11 . 31

8 6 5 0 000- 2 3. 11 8 8 4 1 110- 0 
8 6 5 0 100- 0 8 8 3 0 000+ 2.3 11 . 31

8 8 3 0 000+ 4 2.3 5 5. 11 8 8 3 0 100+ 0 
8 8 3 0 100+ 2.7 5 5. 11 8 8 3 0 110+ 8.2 2 3 3. 11 . 31

8 8 3 0 110+ 8 2 5 3.5. 11 8 8 5 0 000+ 2.3 5 11 . 31

8 8 5 0 000+ 9 5 5. 11 8 8 5 0 100+ 4 7 5 3. 11 . 31

8 8 5 0 100+ 4 7 5 3.5. 11 8 8 5 0 110+ 4 31 3.5 11

8 8 5 0 110+ 2.3 5 5. 11 8 8 5 1 000- 0 
8 8 5 1 000- 0 8 8 5 1 100- 7 3. 11 . 31

8 8 5 1 100- 2 7 3.5. 11 8 8 5 1 110- 0 
8 8 5 1 110- 0 6 9/2 9/2
9/2 9/2 4 1 6 6 0 000+ 8 3.5. 11 . 31

6 6 1 0 000+ 7 2.7 3 3.5. 11 . 31 1 8 8 0 000+ 4 2.3 5 5. 11 . 31

6 6 4 0 000- 0 1 8 8 0 010+ 3 7 5 2.5. 11 . 31

8 6 4 0 000+ 3 7 2.5. 11 . 31 1 8 8 0 011+ 8.4 2 5 3.5. 11 . 31

8 6 4 0 100+ 2 2 3.5. 11 . 31 4 6 6 0 000- 0 
8 6 3 0 000- 4 5. 11 . 31 4 8 6 0 000+ 2.3.7 5 11 . 31

8 6 3 0 100- 2 7 3 3.5. 11 . 31 4 8 6 0 010+ 3.7 5 2. 11 . 31

8 6 5 0 000- 91 2.3.5. 11 . 31 4 8 8 0 000- 0 
8 6 5 0 100- 2 2.7 3 5. 11 . 31 4 8 8 0 010- 3 5. 11 . 31

8 8 1 0 000+ 3.7 5. 11 . 31 4 8 8 0 011- 0 
 4 8 8 1 000- 0 
 4 8 8 1 010- 3 3 5. 11 . 31

 4 8 8 1 011- 0 
     3 8 6 0 000- 2.7 5 11 . 31

     3 8 6 0 010- 8 2 5 3. 11 . 31

     3 8 8 0 000+ 8 3.7 5 5. 11 . 31

     3 8 8 0 010+ 11 5 5. 31

     3 8 8 0 011+ 8.2 7 5 3.5. 11 . 31

     5 8 6 0 000- 2 3.5. 31

5 8 6 0 010- 3 2.5.7. 31

5 8 6 0 100- 2 2.3 5 11 . 31

5 8 6 0 110- 2 2. 31 5 7. 11

5 8 8 0 000+ 0 
5 8 8 0 010+ 5 3.7. 31
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Appendix F
Clebsch-Gordan Coefficients of the Cubic
Point Group with Trigonal Bases
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Appendix G
Integral Numerical Value Associated
with the Thermal Effect of the Spectra

T
TD

� �7Z TD=T

0

x6ex

ex � 1ð Þ2 dx

TD/
T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 19988.1
� 10−3

4988.1
� 10−3

2210.3
� 10−3

1238.1
� 10−3

788.2
�
10−3

543.8
�
10−3

396.4
�
10−3

300.8
�
10−3

235.3
�
10−3

1 188.5
�
10−3

153.9 �
10−3

127.6
� 10−3

107.1
� 10−3

90.98
� 10−3

77.95
�
10−3

67.31
�
10−3

58.52
�
10−3

51.18
�
10−3

44.99
�
10−3

2 39.73
�
10−3

35.23 �
10−3

31.35
� 10−3

27.99
� 10−3

25.06
� 10−3

22.49
�
10−3

20.24
�
10−3

18.25
�
10−3

16.48
�
10−3

14.92
�
10−3

3 13.52
�
10−3

12.28 �
10−3

11.16
� 10−3

10.16
� 10−3

9.26 �
10−3

8.44 �
10−3

7.71 �
10−3

7.05 �
10−3

6.44 �
10−3

5.90 �
10−3

4 5.40 �
10−3

4.95 �
10−3

4.54 �
10−3

4.17 �
10−3

3.83 �
10−3

3.52 �
10−3

3.24 �
10−3

2.98 �
10−3

2.74 �
10−3

2.53 �
10−3

5 2.33 �
10−3

2.15 �
10−3

1.98 �
10−3

1.83 �
10−3

1.69 �
10−3

1.56 �
10−3

1.44 �
10−3

1.33 �
10−3

1.23 �
10−3

1.14 �
10−3

6 1.05 �
10−3

9.77 �
10−4

9.05 �
10−4

8.38 �
10−4

7.77 �
10−4

7.20 �
10−4

6.68 �
10−4

6.19 �
10−4

5.75 �
10−4

5.34 �
10−4

7 4.96 �
10−4

4.60 �
10−4

4.28 �
10−4

3.98 �
10−4

3.70 �
10−4

3.45 �
10−4

3.21 �
10−4

2.98 �
10−4

2.78 �
10−4

2.59 �
10−4

8 2.41 �
10−4

2.25 �
10−4

2.10 �
10−4

1.96 �
10−4

1.83 �
10−4

1.71 �
10−4

1.59 �
10−4

1.49 �
10−4

1.39 �
10−4

1.30 �
10−4
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(continued)

TD/
T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

9 1.22 �
10−4

1.14 �
10−4

1.07 �
10−4

1.00 �
10−4

9.37 �
10−5

8.79 �
10−5

8.24 �
10−5

7.73 �
10−5

7.25 �
10−5

6.80 �
10−5

10 6.39 �
10−5

6.00 �
10−5

5.63 �
10−5

5.30 �
10−5

4.98 �
10−5

4.68 �
10−5

4.41 �
10−5

4.15 �
10−5

3.90 �
10−5

3.68 �
10−5

11 3.47 �
10−5

3.27 �
10−5

3.08 �
10−5

2.91 �
10−5

2.74 �
10−5

2.59 �
10−5

2.44 �
10−5

2.31 �
10−5

2.18 �
10−5

2.06 �
10−5

12 1.95 �
10−5

1.84 �
10−5

1.75 �
10−5

1.65 �
10−5

1.56 �
10−5

1.48 �
10−5

1.40 �
10−5

1.33 �
10−5

1.26 �
10−5

1.19 �
10−5

13 1.13 �
10−5

1.08 �
10−5

1.03 �
10−5

9.73 �
10−6

9.25 �
10−6

8.79 �
10−6

8.36 �
10−6

7.95 �
10−6

7.56 �
10−6

7.20 �
10−6

14 6.85 �
10−6

6.52 �
10−6

6.21 �
10−6

5.92 �
10−6

5.64 �
10−6

5.37 �
10−6

5.12 �
10−6

4.89 �
10−6

4.67 �
10−6

4.46 �
10−6

15 4.25 �
10−6

4.06 �
10−6

3.88 �
10−6

3.71 �
10−6

3.55 �
10−6

3.39 �
10−6

3.24 �
10−6

3.10 �
10−6

2.97 �
10−6

2.84 �
10−6

16 2.72 �
10−6

2.60 �
10−6

2.49 �
10−6

2.39 �
10−6

2.29 �
10−6

2.19 �
10−6

2.10 �
10−6

2.02 �
10−6

1.93 �
10−6

1.86 �
10−6

17 1.78 �
10−6

1.71 �
10−6

1.64 �
10−6

1.58 �
10−6

1.51 �
10−6

1.46 �
10−6

1.40 �
10−6

1.34 �
10−6

1.29 �
10−6

1.24 �
10−6

18 1.20 �
10−6

1.15 �
10−6

1.11 �
10−6

1.06 �
10−6

1.03 �
10−6

9.87 �
10−7

9.50 �
10−7

9.15 �
10−7

8.82 �
10−7

8.50 �
10−7

19 8.19 �
10−7

7.90 �
10−7

7.61 �
10−7

7.34 �
10−7

7.08 �
10−7

6.83 �
10−7
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Line broadening, 179, 181, 182, 190, 191, 196,

197, 199, 200, 319, 320, 377
Line shape function, 170, 171, 176–179, 191,

233, 319
Line shift, 161, 181, 195, 197–199
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